Skip to main content
Log in

On an alternative formulation of the thermodynamic stability condition

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this contribution, we present a new, geometric approach aimed at deriving thermodynamic relations in a formally correct and systematic way. We obtain a number of useful relations, give a formulation of the Gibbs stability condition and describe the limits of its use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Berman, T.J. Laffey, Similarity classes and principal submatrices. Linear Algebra Appl. 401, 341–351 (2005)

    Article  Google Scholar 

  2. J.W. Gibbs, The Collected Works of J. Willard Gibbs in Two Volumes. Volume 1: Thermodynamics. Longmans, Green and Co (1931)

  3. D. Gromov, P.E. Caines, Interconnection of thermodynamic control systems. Proc. IFAC World Congress 2011, 6091–6097 (2011). https://doi.org/10.3182/20110828-6-IT-1002.02623

    Article  Google Scholar 

  4. D. Gromov, P.E. Caines, Stability of interconnected thermodynamic systems. In: 50th IEEE Conference on Decision and Control and European Control Conference, pp. 6730–6735 (2011). https://doi.org/10.1109/CDC.2011.6161401

  5. D. Gromov, P.E. Caines, Stability of composite thermodynamic systems with interconnection constraints. IET Control Theory Appl. 9(11), 1629–1636 (2015). https://doi.org/10.1049/iet-cta.2014.0867

    Article  Google Scholar 

  6. R.A. Horn, C.R. Johnson, Matrix Analysis, 2nd edn. (Cambridge University Press, Cambridge, 2012)

    Book  Google Scholar 

  7. W. Kaplan, Advanced Calculus, 5th edn. (Pearson, London, 2002)

    Google Scholar 

  8. P. Libermann, C.M. Marle, Symplectic Geometry and Analytical Mechanics, Mathematics and its Applications. D (Reidel Publishing Company, Dordrecht, 1987)

    Book  Google Scholar 

  9. R. Mrugała, J.D. Nulton, J.C. Schön, P. Salamon, Contact structure in thermodynamic theory. Rep. Math. Phys. 29(1), 109–121 (1991)

    Article  Google Scholar 

  10. A. Münster, Classical Thermodynamics (Wiley, Hoboken, 1970)

    Google Scholar 

  11. I. Prigogine, R. Defay, Chemical Thermodynamics (Longmans, Green and Co, Harlow, 1954)

    Google Scholar 

  12. J. Prussing, The principal minor test for semidefinite matrices. J. Guid. Control Dyn. 9(1), 121–122 (1986)

    Article  Google Scholar 

  13. A.V. Storonkin, Thermodynamics of Heterogeneous Systems (Leningrad State University, Saint Petersburg, 1967)

    Google Scholar 

  14. A.M. Toikka, Some formulation of Le Chatelier–Brown principle. Zhurnal Fizicheskoi Khimii 64(9), 2557–2559 (1990)

    CAS  Google Scholar 

  15. A.M. Toikka, Stability of chemical and phase equilibrium: alternative forms of equations for thermodynamic analysis, in Mathematical Chemistry, ed. by W.I. Hong (Nova Science Publishers Inc., New York, 2010), pp. 509–537

    Google Scholar 

  16. A. van der Schaft, B. Maschke, Geometry of thermodynamic processes. Entropy 20(12), 925 (2018). https://doi.org/10.3390/e20120925

    Article  Google Scholar 

  17. V.A. Zorich, Mathematical Analysis I (Springer, Berlin, 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Gromov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors acknowledge Russian Foundation for Basic Research for the support of this study (RFBR project 19-03-00375).

Appendix

Appendix

Derivation of (10). Consider a function \(\varPhi (u,v)=0\), \(\varPhi :{\mathbb {R}}^n\times {\mathbb {R}}^m\rightarrow {\mathbb {R}}^n\) s.t. \(\frac{\partial \varPhi }{\partial u}\ne 0\) at \((u^*,v^*)\). This implies that one can locally at \((u^*,v^*)\) express \(u=f(v)\). Differentiating \(\varPhi (u,v)\) w.r.t. v and using the chain rule we get \(\frac{\partial \varPhi }{\partial u}\frac{\partial f}{\partial v}+\frac{\partial \varPhi }{\partial v}=0,\) whence \(\frac{\partial f}{\partial v}=-\left[ \frac{\partial \varPhi }{\partial u}\right] ^{-1}\frac{\partial \varPhi }{\partial v}.\) Note that

$$\begin{aligned} \left[ \frac{\partial \varPhi }{\partial u}\right] ^{-1}=\frac{1}{\det \left( \frac{\partial \varPhi }{\partial u}\right) } \begin{bmatrix}(-1)^{(1+1)}\det \left( \frac{\partial \varPhi }{\partial u} [1,1]\right) &\dots &(-1)^{(n+1)}\det \left( \frac{\partial \varPhi }{\partial u}[n,1]\right) \\ \vdots && \vdots \\ (-1)^{(n+1)}\det \left( \frac{\partial \varPhi }{\partial u}[1,n]\right) &\dots &(-1)^{(2n)}\det \left( \frac{\partial \varPhi }{\partial u}[n,n]\right) \end{bmatrix}, \end{aligned}$$

where the last matrix is the adjugate, i.e., the transposed cofactor matrix of \(\frac{\partial \varPhi }{\partial u}\), [6].

So, for the partial derivative \(\frac{\partial f_i}{\partial v_j}\) we have

$$\begin{aligned} \frac{\partial f_i}{\partial v_j}=-\frac{1}{\det \left( \frac{\partial \varPhi }{\partial u}\right) } \begin{bmatrix}(-1)^{(1+i)}\det \left( \frac{\partial \varPhi }{\partial u}[1,i]\right)&\dots&(-1)^{(n+i)}\det \left( \frac{\partial \varPhi }{\partial u}[n,i]\right) \end{bmatrix}\begin{bmatrix}\frac{\partial \varPhi _1}{\partial v_j}\\ \vdots \\ \frac{\partial \varPhi _n}{\partial v_j}\end{bmatrix}, \end{aligned}$$

where the product of the row and the column is the Laplace expansion of \(\left[ \frac{\partial \varPhi }{\partial x}\right] \) with respect to the ith column and such that the ith column is composed by the partial derivatives \(\frac{\partial \varPhi }{\partial v_j}\). This yields (10). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gromov, D., Toikka, A. On an alternative formulation of the thermodynamic stability condition. J Math Chem 58, 1219–1229 (2020). https://doi.org/10.1007/s10910-020-01126-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-020-01126-1

Keywords

Mathematics Subject Classification

Navigation