Skip to main content
Log in

Bio-absorbable Cardiovascular Implants: Status and Prognosis

  • Biodegradable Materials for Medical Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

There are three major classes of cardiovascular implants that can benefit from biodegradable materials: coronary/peripheral stents, occluders for heart defects, and embolic devices. We review the progress made in these three device classes, and offer our own prognosis for where the technology needs to improve. Although there has been product withdrawals of an approved fully resorbable stent (Absorb BVS), we believe that metallic bioresorbable stents may have a role to play. Likewise, in the area of embolic devices, there is a need for a quick-acting, fully-degradable device that blocks certain blood vessels. Most of the push for bioabsorbable occluders will come from countries where there is a large incidence of heart defects, such as China and India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted with permission from Ref. 10

Fig. 2

Adapted from Ref. 17

Fig. 3
Fig. 4

Images provided by Shanghai Mallow Medical

Fig. 5
Fig. 6

Reprinted with permission from Ref. 46

Similar content being viewed by others

References

  1. A. Bussooa, S. Neale, and J.R. Mercer, Sensors 18, 2008 (2018).

    Google Scholar 

  2. S. Venkatraman, X. Yun, Y. Huang, D. Mondal, and E. Liu, Bioactive coatings for implanted devices. Biol. Biomed. Coat. Appl. 2, 471 (2011).

    Google Scholar 

  3. R.H. Samson, R. Morales, D.P. Showalter, M.R. Lepore, and D.G. Nair, J. Vasc. Surg. 64, 638 (2016).

    Google Scholar 

  4. S. Nishio, K. Kosuga, K. Igaki, M. Okada, E. Kyo, T. Tsuji, E. Takeuchi, Y. Inuzuka, S. Takeda, T. Hata, Y. Takeuchi, Y. Kawada, T. Harita, J. Seki, S. Akamatsu, S. Hasegawa, N. Bruining, S. Brugaletta, S. de Winter, T. Muramatsu, Y. Onuma, P.W. Serruys, and S. Ikegkuchi, Circulation 125, 2343 (2012).

    Google Scholar 

  5. D. Fornell, in Current State of Bioresorbable Stent Technology (Diagnoistic and Interventional Cardiology, 2018), https://www.dicardiology.com/article/current-state-bioresorbable-stent-technology. Accessed 30 July 2019.

  6. Y. Huang, Y.S. Wong, H.C.A. Ng, F.Y.C. Boey, and S. Venkatraman, Bioeng. Transl. Med. 2, 156 (2017).

    Google Scholar 

  7. H.Y. Ang, H. Bulluck, P. Wong, S.S. Venkatraman, Y. Huang, and N. Foin, Int. J. Cardiol. 228, 931 (2017).

    Google Scholar 

  8. M. Iantorno, M.J. Lipinski, H.M. Garcia-Garcia, B.J. Forrestal, T. Rogers, D. Gajanana, K.D. Buchanan, R. Torguson, W.S. Weintraub, and R. Waksman, Am. J. Cardiol. 122, 1652 (2018).

    Google Scholar 

  9. H. Jinnouchi, S. Torii, A. Sakamoto, F.D. Kolodgie, R. Virmani, and A.V. Finn, Nat. Rev. Cardiol. 16, 286 (2019).

    Google Scholar 

  10. K.C. Koskinas, Y.S. Chatzizisis, A.P. Antoniadis, and G.D. Giannoglou, J. Am. Coll. Cardiol. 59, 1337 (2012).

    Google Scholar 

  11. H.Y. Ang, Y.Y. Huang, S.T. Lim, P. Wong, M. Joner, and N. Foin, J. Thorac. Dis. 9, S923 (2017).

    Google Scholar 

  12. H.Y. Ang, H. Bulluck, P. Wong, S.T. Lim, S.S. Venkatraman, Y. Huang, and F. Nicoles, Bioresorbable scaffold stability and mechanical properties.Textbook of Catheter-Based Cardiovascular Interventions, ed. P. Lanzer (Cham: Springer, 2018), p. 641.

    Google Scholar 

  13. M. Moravej and D. Mantovani, Int. J. Mol. Sci. 12, 4250 (2011).

    Google Scholar 

  14. H.Y. Ang, D. Toong, W.S. Chow, W. Seisilya, W. Wu, P. Wong, S.S. Venkatraman, N. Foin, and Y. Huang, Sci. Rep. 8, 17409 (2018).

    Google Scholar 

  15. M. Haude, H. Ince, S. Kische, A. Abizaid, R. Tolg, P. Alves Lemos, N.M. Van Mieghem, S. Verheye, C. von Birgelen, E.H. Christiansen, W. Wijns, H.M. Garcia-Garcia, and R. Waksman, EuroIntervention 13, 432 (2017).

    Google Scholar 

  16. P.K. Bowen, E.R. Shearier, S. Zhao, R.J. Guillory, F. Zhao, J. Goldman, and J.W. Drelich, Adv. Healthc. Mater 5, 1121 (2016).

    Google Scholar 

  17. S. Garg and P.W. Serruys, J. Am. Coll. Cardiol. 56, S43 (2010).

    Google Scholar 

  18. A.J. Drelich, S. Zhao, R.J. Guillory, J.W. Drelich, and J. Goldman, Acta Biomater. 58, 539 (2017).

    Google Scholar 

  19. S. Liu, K. Peng, C. Hsiao, K. Liu, H. Chung, and J. Chen, Ann. Biomed. Eng. 39, 2759 (2011).

    Google Scholar 

  20. Y. Zhu, X. Huang, J. Cao, J. Hu, Y. Bai, and H. Jiang, J. Biomed. Biotechnol. 2012, 735989 (2012).

    Google Scholar 

  21. D. Duong-Hong, Y.D. Tang, W. Wu, S.S. Venkatraman, F. Boey, J. Lim, and J. Yip, Catheter Cardiovasc. Interv. 76, 711 (2010).

    Google Scholar 

  22. Y. Huang, Y.S. Wong, J. Wu, J.F. Kong, J.N. Chan, L. Khanolkar, D.P. Rao, F.Y. Boey, and S.S. Venkatraman, J. Mech. Behav. Biomed. Mater. 36, 143 (2014).

    Google Scholar 

  23. W. Lu, W. Ouyang, S. Wang, Y. Liu, F. Zhang, W. Wang, and X. Pan, J. Int. Cardiol. 31, 841 (2018).

    Google Scholar 

  24. A. Laurent, R. Beaujeux, M. Wassef, D. Rüfenacht, E. Boschetti, J.J. Merland, and A.J.N.R. Am, J. Neuroradiol. 17, 533 (1996).

    Google Scholar 

  25. R. Beaujeux, A. Laurent, M. Wassef, A. Casasco, Y.P. Gobin, A. Aymard, D. Rüfenacht, J.J. Merland, and A.J.N.R. Am, J. Neuroradiol. 17, 541 (1996).

    Google Scholar 

  26. S. Vaidya, K. Tozer, and J. Chen, Semin. Intervent. Radiol. 25, 204 (2008).

    Google Scholar 

  27. B. Marcia, B. Marc, K. David, M. Stephan, and L. Janel, Embolization, US 7,588,780 B2 (2009).

  28. C.D. Gadaleta and G. Ranieri, Crit. Rev. Oncol. Hematol. 80, 40 (2011).

    Google Scholar 

  29. S. Stampfl, N. Bellemann, U. Stampfl, C.M. Sommer, H. Thierjung, R. Lopez-Benitez, B. Radeleff, I. Berger, and G.M. Richter, J. Vasc. Interv. Radiol. 20, 1597 (2009).

    Google Scholar 

  30. B. Guiu, A. Schmitt, S. Reinhardt, A. Fohlen, T. Pohl, M. Wendremaire, A. Denys, J. Blummei, and M. Boulin, J. Vasc. Interv. Radiol. 26, 262 (2015).

    Google Scholar 

  31. K.H. Lee, E.A. Liapi, C. Cornell, P. Reb, M. Buijs, J.A. Vossen, V.P. Ventura, and J.F. Geschwind, Cardiovasc. Intervent. Radiol. 33, 576 (2010).

    Google Scholar 

  32. A.L. Lewis, M.V. Gonzalez, A.W. Lloyd, B. Hall, Y. Tang, S.L. Willis, S.W. Leppard, L.C. Wolfenden, R.R. Palmer, and P.W. Stratford, J. Vasc. Interv. Radiol. 17, 335–342 (2006).

    Google Scholar 

  33. A.L. Lewis, Embolisation devices from biomedical polymers for intra-arterial occlusion and drug delivery in the treatment of cancer.Biomaterials for Cancer Therapeutics, ed. K. Park (Cambridge: Woodhead, 2013), p. 207.

    Google Scholar 

  34. C. Aliberti, R. Caraandina, D. Sarti, E. Pizzirani, G. Ramondo, U. Cillo, S. Guadagni, and G. Fiorentini, Future Oncol. 13, 2243 (2017).

    Google Scholar 

  35. M. Shimohura, T. Kawai, T. Hashizume, M. Muto, M. Kitase, and Y. Shibamoto, Cardiovasc. Intervent. Radiol. 41, 848 (2018).

    Google Scholar 

  36. J. Doucet, L. Kiri, K. O’Connell, S. Kehoe, R.J. Lewandowski, D.M. Liu, R.J. Abraham, and D. Boyd, J. Funct. Biomater. 9, E14 (2018).

    Google Scholar 

  37. M. van Elk, B. Ozbakir, A.D. Barten-Rijbroek, G. Storm, F. Nijsen, W.E. Hennink, T. Vermonden, and R. Deckers, PLoS One 10, e0141626 (2015).

    Google Scholar 

  38. A. Poursaid, M.M. Jensen, E. Huo, and H. Ghandehari, J. Control. Release 240, 414 (2016).

    Google Scholar 

  39. J.S. Kim, B.K. Kwak, H.J. Shim, Y.C. Lee, H.W. Baik, M.J. Lee, S.M. Han, S.H. Son, Y.B. Kim, S. Tokura, and B.M. Lee, J. Microencapsul. 24, 408 (2007).

    Google Scholar 

  40. S. Louguet, V. Verret, L. Bédouet, E. Servais, F. Pascale, M. Wassef, D. Labarre, A. Laurent, and L. Moine, Acta Biomater. 10, 1194 (2014).

    Google Scholar 

  41. L. Weng, P. Rostamzadeh, N. Nooryshokry, H.C. Le, and J. Golzarian, Acta Biomater. 9, 6823 (2013).

    Google Scholar 

  42. L. Weng, H.C. Le, J. Lin, and J. Golzarian, Int. J. Pharm. 409, 185 (2011).

    Google Scholar 

  43. L. Weng, D. Seelig, P. Rostamzadeh, and J. Golzarian, J. Vasc. Interv. Radiol. 26, 1887 (2015).

    Google Scholar 

  44. L. Weng, N. Rostambeigi, N.D. Zantek, P. Rostamzadeh, M. Bravo, J. Carey, and J. Golzarian, Acta Biomater. 9, 8182 (2013).

    Google Scholar 

  45. M. Constant, E. Keeley, and G. Cruise, J. Biomed. Mater. Res. Part B 89B, 306 (2009).

    Google Scholar 

  46. Y.S. Wong, A.V. Salvekar, K.D. Zhuang, H. Liu, W.R. Birch, K.H. Tay, W.M. Huang, and S.S. Venkatraman, Biomaterials 102, 98 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subbu Venkatraman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatraman, S., Yingying, H. & Wong, Y.S. Bio-absorbable Cardiovascular Implants: Status and Prognosis. JOM 72, 1833–1844 (2020). https://doi.org/10.1007/s11837-020-04070-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04070-2

Navigation