Skip to main content
Log in

Effect of Carbon and Nitrogen on the Hydrogen Embrittlement of 15Cr-15Mn-4Ni-Based Stable Austenitic Stainless Steels

  • Hydrogen Effects on Material Performance
  • Published:
JOM Aims and scope Submit manuscript

A Correction to this article was published on 13 November 2020

This article has been updated

Abstract

The effects of carbon and nitrogen on hydrogen embrittlement were investigated in stable austenitic stainless steels, Fe-15Cr-15Mn-4Ni-0.3Si with 0.3C or 0.3N (wt.%). The steels were electro-chemically charged under two different conditions and tensile tested at a slow strain rate. Hydrogen degraded the tensile properties in both alloys via different mechanisms. Hydrogen severely weakened the grain boundary strength of the nitrogen-added steel, resulting in early intergranular fracture. Carbon segregation increased the boundary strength, which reduced the extent of hydrogen embrittlement. Moreover, the degree of hydrogen-induced degradation was dependent on the depth of hydrogen penetration. Since the brittle fracture occurred only in the regions penetrated by hydrogen, the embrittlement ratio was not a good criterion to assess the susceptibility of the two steels to hydrogen embrittlement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 13 November 2020

    This correction is to correct Fig.��4.

References

  1. C.L. Briant, Metall. Trans. A 10, 181 (1979).

    Article  Google Scholar 

  2. P. Marshall, Austenitic stainless steels: microstructure and mechanical properties (Netherlands: Springer, 1984), pp. 80–139.

    Google Scholar 

  3. H.S. Khatak and B. Raj, Corrosion of Austenitic stainless steels: mechanism, mitigation and monitoring (Netherlands: Elsevier, 2002), pp. 37–73.

    Book  Google Scholar 

  4. M.R. Louthan and R.G. Derrick, Corros. Sci. 15, 565 (1975).

    Article  Google Scholar 

  5. Y. Yagodzinskyy, O. Todoshchenko, S. Papula, and H. Hänninen, Steel Res. Int. 82, 20 (2011).

    Article  Google Scholar 

  6. L. Zhang, Z. Li, J. Zheng, Y. Zhao, P. Xu, C. Zhou, and X. Li, Int. J. Hydrogen Energy 38, 8208 (2013).

    Article  Google Scholar 

  7. M. Koyama, S. Okazaki, T. Sawaguchi, and K. Tsuzaki, Metall. Mater. Trans. A 47, 2656 (2016).

    Article  Google Scholar 

  8. R.P. Reed and M.W. Austin, Scripta Metall. 23, 1359 (1989).

    Article  Google Scholar 

  9. V.G. Gavriljuk, Mater. Sci. Eng. A 438–440, 75 (2006).

    Article  Google Scholar 

  10. K.J. Irvine, T. Gladman, and F.B. Pickering, J. Iron Steel Inst. 119, 1017 (1969).

    Google Scholar 

  11. H.-Y. Ha, T.-H. Lee, C.-S. Oh, and S.-J. Kim, Scripta Mater. 61, 121 (2009).

    Article  Google Scholar 

  12. S.-P. Hannula, H. Hänninen, and S. Tähtinen, Metall. Trans. A 15, 2205 (1984).

    Article  Google Scholar 

  13. P. Rozenak, J. Mater. Sci. 25, 2532 (1990).

    Article  Google Scholar 

  14. C. San Marchi, B.P. Somerday, X. Tang, and G.H. Schiroky, Int. J. Hydrogen Energy 33, 889 (2008).

    Article  Google Scholar 

  15. H.-S. Noh, J.-H. Kang, K.-M. Kim, and S.-J. Kim, Corros. Sci. 124, 63 (2017).

    Article  Google Scholar 

  16. T. Michler, C. San Marchi, J. Naumann, S. Weber, and M. Martin, Int. J. Hydrogen Energy 37, 16231 (2012).

    Article  Google Scholar 

  17. V.G. Gavriljuk, B.D. Shanina, and H. Berns, Acta Mater. 48, 3879 (2000).

    Article  Google Scholar 

  18. L. Cheng, N.M. van der Pers, A. Böttger, ThH de Keijser, and E.J. Mittemeijer, Metall. Trans. A 21, 2857 (1990).

    Article  Google Scholar 

  19. H.M. Ledbetter and M.W. Austin, Mater. Sci. Technol. 3, 101 (1987).

    Article  Google Scholar 

  20. J.M. Papazian and D.N. Besherb, Metall. Trans. 2, 497 (1971).

    Article  Google Scholar 

  21. YuN Petrov, V.G. Gavriljuk, H. Berns, and Ch Escher, Scripta Mater. 40, 669 (1999).

    Article  Google Scholar 

  22. R.K. Dayal and H.J. Grabke, Steel Res. 71, 255 (2000).

    Article  Google Scholar 

  23. S.M. Teus, V.N. Shyvanyuk, and V.G. Gavriljuk, Mater. Sci. Eng. A 497, 290 (2008).

    Article  Google Scholar 

  24. D. Hardie and W. Zheng, Mater. Sci. Technol. 10, 817 (1994).

    Article  Google Scholar 

  25. M. Tanino, H. Komatsu, and S. Funaki, J. Phys. Colloq. 43, 503 (1982).

    Article  Google Scholar 

  26. M. Usui and S. Asano, Scripta Mater. 31, 445 (1994).

    Article  Google Scholar 

  27. A. Macadre, T. Tsuchiyama, and S. Takaki, J. Mater. Sci. 52, 3419 (2017).

    Article  Google Scholar 

  28. G.S. Mogilny, S.M. Teus, V.N. Shyvanyuk, and V.G. Gavriljuk, Mater. Sci. Eng. A 648, 260 (2015).

    Article  Google Scholar 

  29. A.E. Pontini and J.D. Hermida, Scripta Mater. 37, 1831 (1997).

    Article  Google Scholar 

  30. S. Suzuki, M. Obata, K. Abiko, and H. Kimura, Trans. ISIJ 25, 68 (1985).

    Google Scholar 

  31. M. Yamaguchi, Metall. Mater. Trans. A 42, 319 (2011).

    Article  Google Scholar 

  32. M. Kim, C.B. Geller, and A.J. Freeman, Scripta Mater. 50, 1341 (2004).

    Article  Google Scholar 

  33. G.M. Pressouyre, Metall. Trans. A 10, 1571 (1979).

    Article  Google Scholar 

  34. C. SanMarchi, B.P. Somerday, and S.L. Robinson, Int. J. Hydrogen Energy 32, 100 (2007).

    Article  Google Scholar 

  35. A.R. Troiano, Metallogr. Microstruct. Anal. 5, 557 (2016).

    Article  Google Scholar 

  36. R.A. Oriani, Ann. Rev. Mater. Sci. 8, 327 (1978).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) [Research Project No. 2017R1A2B4009780].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Joon Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, KS., Kang, JH. & Kim, SJ. Effect of Carbon and Nitrogen on the Hydrogen Embrittlement of 15Cr-15Mn-4Ni-Based Stable Austenitic Stainless Steels. JOM 72, 2011–2019 (2020). https://doi.org/10.1007/s11837-020-04108-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04108-5

Navigation