Skip to main content

Advertisement

Log in

Petrogenesis of Neogene polymagmatic suites at a monogenetic low-volume volcanic province, Bahariya depression, Western Desert, Egypt

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Monogenetic volcanoes can yield eruptive suites displaying substantial complexity in compositional characteristics. The Bahariya monogenetic volcanoes (BMV) in the Western Desert, Egypt are a good example. They comprise complex stratigraphic deposits involving scoria cone, lava flows, and subvolcanic sills and dikes related to diverse eruptive styles. Whole-rock and mineral chemistry and 40Ar–39Ar geochronology are used here to document the petrogenesis, source characteristics, and evolution of the Bahariya volcanoes. The architecture of the BMV is the product of two alkali magma batches: pyroclastics and lava flows forming explosive scoria cone (batch 1) and subvolcanic sills (batch 2). The two batches show contrast in the concentrations of incompatible trace elements and REE as well as element ratios such as Nb/Yb, Gd/Yb, Nb/U, and Ce/Pb (36, 5.0, 44, 30 vs. 17, 4.0, 39, 24 for batch 1 and 2, respectively). New whole-rock 40Ar/39Ar dating displays consistent age of 23.71 ± 0.06 and 23.73 ± 0.01 Ma for magma emplacement of batch 2. Batches 1 and 2 share common LILE and LREE enrichments and HFSE depletions, analogous to a HIMU-like, mantle-derived OIB source described from other Paleogene–Oligocene intraplate magmatic provinces in North Africa and worldwide. Trace element modeling proposes a derivation of the Bahariya volcanoes from parental melts generated by 8–12% partial melting of garnet lherzolite and amphibole-bearing garnet lherzolite at 2.18 ± 0.33 and 1.77 ± 0.33 GPa for batch 1 and batch 2, respectively, across the lithosphere–asthenosphere boundary at c. 70–90 km depth (2.14–2.76 GPa). These sources had been earlier metasomatized by volatile-, LILE- and HFSE-rich fluid(s) originating from Neoproterozoic subduction or a Phanerozoic plume. Fractional crystallization involved olivine + clinopyroxene in both batches followed by Fe–Ti oxides + apatite in batch 2. Furthermore, crust contamination/assimilation was an irrelevant process at crustal level during magma ascend to the surface. Data results of the geo-barometric computations disclose two magma storage levels involving intermediate to lower crustal levels at c. 35 km (1.05 GPa) for batch 1 and mid-crustal level at c. 25 km depth (0.75 GPa) for batch 2. This study delivers proof that magmas emitted at Bahariya depression can undergo complex polymagmatic processes during their storage and passage in the crust, mainly due to the existence of a multilevel plumbing system. The origin of the BMV, as with other within-plate volcanoes in North Egypt, appears to be allied to extension-induced asthenosphere upwelling activated by limited exclusion of thickened lithospheric root under a passive rift tectonic regime coupled with the development of lithospheric thinning and continental breakup in North Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abebe T (2014) The occurrence of a complete continental rift type of volcanic rocks suite along the Yerer–Tullu Wellel Volcano tectonic lineament, Central Ethiopia. J Afri Earth Sci 99:374–385

    Article  Google Scholar 

  • Abu El Rus MMA, Roony TO (2017) Insights into the lithosphere to asthenosphere melting transition in northeast Africa: evidence from the Tertiary volcanism in middle Egypt. Chem Geol 455:282–303

    Article  Google Scholar 

  • Adam J, Green TH, Sie SH (1993) Proton microprobe determined partitioning of Rb, Sr, Ba, Y, Zr, Nb and Ta between experimentally produced amphiboles and silicate melts with variable F content. Chem Geol 109:29–49

    Article  Google Scholar 

  • Adam J, Green T (2006) Trace element partitioning between mica-and amphibole bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behavior. Contrib Mineral Petrol 152(1):1–17

    Article  Google Scholar 

  • Adam J, Green TH (2011) Trace element partitioning between mica- and amphibole bearing garnet lherzolite and hydrous basanitic melt: 2. Tasmanian Cainozoic basalts and the origins of intraplate basaltic magmas. Contrib Mineral Petrol 161:883–899

    Article  Google Scholar 

  • Anderson DL, Natland JH (2005) A brief history of the plume hypothesis and its competitors: concept and controversy. Geol Soci Amer Speci Papers 388:119–145

    Google Scholar 

  • Bache F, Olivet JL, Gorini C, Aslanian D, Labails C, Rabineau M (2010) Evolution of rifted continental margin: the case of the Gulf of lions, Western Mediterranean basin. Earth Planet Sci Lett 292:345–356

    Article  Google Scholar 

  • Baldridge WS, Eyal Y, Bartov Y, Steinitz G, Eyal M (1991) Miocene magmatism of Sinai related to the opening of the Red Sea. Tectonophysics 197:181–201

    Article  Google Scholar 

  • Bardintzeff JM, Deniel C, Guillou N, Plateovel B, Telouk P, Oun KM (2012) Miocene to recent alkaline volcanism between Al Haruj and Waw an Namous (southern Libya). Int J Earth Sci (Geol Rundsch) 101:1047–1063

    Article  Google Scholar 

  • Bloomer SH, Stern RJ, Fisk E, Geschwind CH (1989) Shoshonitic volcanism in the northern Mariana Arc: mineralogic and major and trace element characteristics. J Geophys Res Solid Earth 94(B4):4469–4496

    Article  Google Scholar 

  • Bosworth W, Huchon P, McClay K (2005) The Red Sea and Gulf of Aden basins. J Afri Earth Sci 43:334–378

    Article  Google Scholar 

  • Bosworth W, Stockli DF (2016) Early magmatism in the greater Red Sea rift: timing and significance. Can J Earth Sci 53:1158–1176

    Article  Google Scholar 

  • Bosworth W, Stockli DF, Helgeson DE (2015) Integrated 1 outcrop, 3D seismic, and geochronologic interpretation of Red Sea dike-related deformation in the Western Desert, Egypt—the role of the 23 Ma Cairo ‘‘mini-plume’’. J Afri Earth Sci 109:107–119

    Article  Google Scholar 

  • Boyce JA, Nicholls IA, Keays RR, Hayman PC (2015) Variation in parental magmas of Mt Rouse, a complex polymagmatic monogenetic volcano in the basaltic intraplate Newer Volcanic Province, southeast Australia. Contrib Mineral Petrol 169:11. https://doi.org/10.1007/s00410-015-1106-y

    Article  Google Scholar 

  • Brenna M, Cronin SJ, Smith IEM, Sohn YK, Nemeth K (2010) Mechanisms driving polymagmatic activity at a monogenetic volcano, Udo, Jeju Island, south Korea. Contrib Mineral Petrol 160:1–20

    Article  Google Scholar 

  • Brenna M, Cronin SJ, Nemeth K, Smith IEM, Sohn YK (2011) The influence of magma plumbing complexity on monogenetic eruptions, Udo, Jeju Island, south Korea. Terra Nova 23:70–75

    Google Scholar 

  • Brenna M, Cronin SJ, Smith IEM, Maas R, Sohn YK (2012) How small-volume basaltic magmatic systems develop: a case study from the Jeju Island Volcanic Field, Korea. J Petrol 53:985–1018

    Article  Google Scholar 

  • Bruce H, Hotzl H (1988) The sedimentary evolution of the Red Sea rift: a comparison of the northwest (Egyptian) and northeast (Saudi Arabia)margins. Tectonophysics 153:193–208

    Article  Google Scholar 

  • Bryan WB, Finger LW, Chayes F (1969) Estimating proportions in petrographic mixing equations by least squares approximation. Science 163:926–927

    Article  Google Scholar 

  • Bryan SE, Ernst RE (2008) Revised definition of large Igneous Provinces (LIPs). Earth Sci Rev 86:175–202

    Article  Google Scholar 

  • Budach I, Brasse H, Díaz D (2013) Crustal-scale electrical conductivity anomaly beneath inflating Lazufre volcanic complex, Central Andes. J S Am Earth Sci 42:144–149

    Article  Google Scholar 

  • Camp VE, Roobol MJ (1992) Upwelling asthenosphere beneath western Arabia and its regional implications. J Geophys Res 97:15255–15271

    Article  Google Scholar 

  • Canil D (1999) Vanadium partitioning between orthopyroxene, spinel and silicate melt and the redox states of mantle source regions for primary magmas. Geochim Cosmochim Acta 63:557–572

    Article  Google Scholar 

  • Cañón-Tapia E (2016) Reappraisal of the significance of volcanic fields. J Volcanol Geotherm Res 310:26–38

    Article  Google Scholar 

  • Cebrià JM, Lopèz-Riuz J, Doblas M, Oyarzun R, Hetogen J, Benito R (2000) Geochemestry of the quaternary alkali basalts of Garrotxa (NE Volcanic Province, Spain): a case of double enrichment of the mantle lithosphere. J Volcanol Geotherm Res 102:217–235

    Article  Google Scholar 

  • Charlier B, Duchesne JC, Vander Auwera J (2006) Magma chamber processes in the Tellnes ilmenite deposit (Rogaland Anorthosite Province, SW Norway) and the formation of Fe–Ti ores in massif-type anorthosites. Chem Geol 234:264–290

    Article  Google Scholar 

  • Chauvel C, Goldstein SL, Hofmann AW (1995) Hydration and dehydration of oceanic- crust controls Pb evolution in the mantle. Chem Geol 126(1):65–75

    Article  Google Scholar 

  • Chazot G, Menzies MA, Baker J (1998) Pre-, syn- and post-rift volcanism 1 on the southwestern margin of the Arabian plate. In: Purser BH, Bosence DWJ (eds) Sedimentation and tectonics of rift basins: Red Sea-Gulf of Aden, Chapman and Hall. Chapman and Hall, London, pp 50–55

    Chapter  Google Scholar 

  • Chen L (2009) Lithospheric structure variations between the eastern and central North China Craton from S- and P-receiver function migration. Phys Earth Planet Inter 173(3–4):216–227

    Article  Google Scholar 

  • Clarke H, Troll VR, Carracedo JC (2009) Phreatomagmatic to Strombolian eruptive activity of basaltic cinder cones: Montan‹a Los Erales, Tenerife, Canary Islands. J Volcanol Geotherm Res 180:225–245

    Article  Google Scholar 

  • Courtier AM, Jackson MG, Lawrence JF, Wang Z, Lee CTA, Halama R, Warren JM, Workman R, Xu W, Hirschmann MM, Larson AM, Hart SR, Bertelloni C, Stixrude L, Chen WP (2007) Correlation of seismic and petrologic thermometers suggests deep thermal anomalies beneath hotspots. Earth Planet Sci Lett 264:308–316

    Article  Google Scholar 

  • Dai LQ, Zhao ZF, Zheng YF (2014) Geochemical insights into the role ofmetasomatic hornblendite in generating alkali basalts. Geochem Geophys Geosyst 15:3762–3779

    Article  Google Scholar 

  • Dorais MJ, Marvinney RG, Markert K (2017) The age, petrogenesis, and tectonic significance of the frontence formation basalts, Northern New Hampshire and Western Maine. Am J Sci 317:2–20

    Article  Google Scholar 

  • Duggen S, Hoernle K, Den Van BP, Garbeschönberg D (2005) Post-collisional transition from subduction- to intraplate-type magmatismin the Western most Mediterranean: evidence for continental-edge delamination of subcontinental lithosphere. J Petrol 46(6):1155–1201

    Article  Google Scholar 

  • Ebinger C (2005) Continental break-up: the East African perspective. Astron Geophys 46:216–221

    Article  Google Scholar 

  • El Aref MM, Abou Khadrah MA, Lotfi ZH (1987) Karst topography and karstification processes in the Eocene limestone plateau of El Bahariya Oasis, Western Desert. Egypt J Geomorph 31:45–64

    Google Scholar 

  • El Aref MM, El Dougdog AA, Mesaed AA (1991) Landform evolution and formation of ferricrete duricrusts, El Heiz Area, El Bahariya depression, Western Desert. Egypt J Geol 34:1–39

    Google Scholar 

  • El Aref MM, Mesaed AA, Khalil MA, Salama WS (2006) Stratigraphic setting, facies analyses and depositional environments of the Eocene ironstones of Gabal Ghorabi mine area, El Bahariya depression, Western Desert. Egypt Egypt J Geol 5029:57–70

    Google Scholar 

  • El Aref MM, Hammed MS, Salama A (2017) Inventory and assessment of the geomorphosites of Bahariya–Farafra Territory, Western Desert. Egypt Int J Sci Basic Appl Res 33:128–143

    Google Scholar 

  • Ellam RM (1992) Lithospheric thickness as a control on basalt geochemistry. Chem Geol 20:153–156

    Article  Google Scholar 

  • Endress C, Furman T, Abu El-Rus MA (2009) Geochemistry of 24 Ma Basalts from Northeast Egypt: implications for small-scale convection beneath the East African rift system. American Geopysical Union (AGU), USA.

    Google Scholar 

  • Endress C, Furman T, Abu El-Rus MA, Hanan BB (2011) Geochemistry of 24 Ma basalts from NE Egypt: source components and fractionation history. In: Van Hinsbergen DJJ, Buiter SJH, Torsvik TH, Gaina C, Webb SJ (eds) The formation and evolution of 1 Africa: a synopsis of 3.8 Ga of earth history. Geol Soci Lond Speci Publs 357:265–283.

  • Falloon TJ, Danyushevsky LV, Green DH (2001) Peridotite melting at 1 GPa: reversal experiments on partial melt compositions produced by peridotite–basalt sandwich experiments. J Petrol 42:2363–2390

    Article  Google Scholar 

  • Foley SF, Prelevic D, Rehfeldt T, Jacob DE (2013) Minor and trace elements in olivines as probes into early igneous andmantlemelting processes. Earth Planet Sci Lett 363:181–191

    Article  Google Scholar 

  • Francis D (1986) The pyroxene paradox in MORB glasses:a signature of picritic parental magmas. Nature 319(586):588

    Google Scholar 

  • Frey FA, Green DH, Roy D (1978) Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilities from South Eastern Australia utilizing geochemical and experimental petrological data. J Petrol 19:463–513

    Article  Google Scholar 

  • Furman T, Graham D (1999) Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province. Lithos 48:237–262

    Article  Google Scholar 

  • Gaetani GA, Kent AJR, Grove TL, Hutcheon ID, Stolper EM (2003) Mineral/melt partitioning of trace elements during hydrous peridotite partial melting. Contrib Mineral Petrol 145:391–405

    Article  Google Scholar 

  • Gao S, Rudnick R, Xu W, Yuan H, Liu Y, Walker RJ, Puchtel LR, Liu X, Huang H, Wang X, Yang J (2008) Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China craton. Earth Planet Sci Lett 270(1–2):41–53

    Article  Google Scholar 

  • Gazel E, Plank T, Forsyth DW, Bendersky C, Lee CA, Hauri EH (2012) Lithosphere versus asthenosphere mantle sources at the big pine volcanic field California, USA. Geochem Geophys Geosyst 13:Q0AK06

    Article  Google Scholar 

  • Ghanoush H, Imber J, McCaffrey K (2014) Cenozoic Subsidence and Lithospheric Stretching Deformation of the Ajdabiya Trough Area, Northeast Sirt Basin, Libya. AAPG (2014) Annual Convention and Exhibition. Houston, Texas

    Google Scholar 

  • Goes S, Spakman W, Bijwaard H (1999) A lower mantle source for central European volcanism. Science 286(5446):1928–1931

    Article  Google Scholar 

  • Gorton MP, Schandl ES (2000) From continents to island arcs: a geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks. Can Mineral 38:1065–1073

    Article  Google Scholar 

  • Green TH (1994) Experimental studies of trace-element partitioning applicable to igneous petrogenesis-Sedona 16 years later. Chem Geol 117(1–4):1–36

    Article  Google Scholar 

  • Gudmundsson A (1987) Formation and mechanics of magma reservoirs in Iceland. Geophys J R Astron Soc 91:27–41

    Article  Google Scholar 

  • Havlin C, Parmentier EM, Hirth G (2013) Dike propagation driven by melt accumulation at the lithosphere–asthenosphere boundary. Earth Planet Sci Lett 376:20–28

    Article  Google Scholar 

  • Hermance J (1981) Crustal gensis in Iceland; geophysical constraints on crustal thickening with age. Geophys Res Lett 8:203–206

    Article  Google Scholar 

  • Herzberg C, Asimow PD, Arndt N, Niu YL, Lesher CM, Fitton JG, Cheadle MJ, Saunders AD (2007) Temperatures in ambient mantle and plumes: constraints from basalts, picrites, and komatiites. Geochem Geophys Geosyst. https://doi.org/10.1029/2006GC001390

  • Hirose K, Kawamoto T (1995) Hydrous partial melting of lherzolite at 1 GPa: the effect of H2O on the genesis of basaltic magmas. Earth Planet Sci Lett 133:463–473

    Article  Google Scholar 

  • Hofmann AW (2003) Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. Treatise on Geochemistry 2:568

    Google Scholar 

  • Hofmann AW (2014) Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. 2nd edition. Treatise Geochem 3:67–101

    Article  Google Scholar 

  • Hofmann AW, Jochum KP, Seufert M, White WM (1986) Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planet Sci Lett 79:33–45

    Article  Google Scholar 

  • Hosny A, Nyblade A (2014) Crustal structure in southeastern Egypt: symmetric thinning of the northern Red Sea rifted margins. Geology 42:219–222

    Article  Google Scholar 

  • Hosny A, Nyblade A (2016) Crustal structure of Egypt from Egyptian national seismic network data. Tectonophysics 687:257–267

    Article  Google Scholar 

  • Horspool NA, Savage MK, Bannister S (2006) Implications for intraplate volcanism and back-arc deformation in northwestern New Zealand, from joint inversion of receiver functions and surface waves. Geophys J Int 166:1466–1483

    Article  Google Scholar 

  • Humphreys ER, Niu YL (2009) On the composition of ocean island basalts (OIB): the effects of lithospheric thickness variation and mantle metasomatism. Lithos 112:118–136

    Article  Google Scholar 

  • Irving AJ, Frey FA (1987) Distribution of trace elements between garnet megacrysts and host volcanic liquids of kimberlitic to rhyolitic composition. Geochim Cosmochim Acta 42:771–787

    Article  Google Scholar 

  • Johnson KTM (1994) Experimental Cpx/ and garnet/melt partitioning of REE and other trace elements at high pressures: Petrogenetic implications. Mineral Mag 58A:454–455

    Article  Google Scholar 

  • Jull M, Kelemen PB (2001) On the conditions for lower crustal convective instability. J Geophys Res Solid Earth 106:6423–6446

    Article  Google Scholar 

  • Ilani S, Harlavan Y, Tarawneh K, Rabba I, Weinberger R, Ibrahim K, Peltz S, Steinitz G (2001) New K\Ar ages of basalts from the Harrat Ash Shaam volcanic field in Jordan: implications for the span and duration of the upper-mantle upwelling beneath the western Arabian plate. Geology 29(2):171–174

    Article  Google Scholar 

  • Kappelman J, Simons EL, Swisher CC (1992) New age determinations for the Eocene–Oligocene boundary sediments in the Fayum Depression, northern Egypt. J Geol 100:647–668

    Article  Google Scholar 

  • Keen MJ (1985) The dynamics of rifting: deformation of the lithosphere by active and passive driving fores. J Geophys J R Astro Soc 80:95–120

    Article  Google Scholar 

  • Kenea NH, Ebinger CJ, Rex DC (2001) Late oligocene volcanism and extension in the southern Red Sea Hills, Sudan. J Geol Soci (London) 158:285–294

    Article  Google Scholar 

  • Kinzler RJ (1997) Melting ofmantle peridotite at pressure approaching the spinel to garnet transition: application to mid-ocean ridge basalt petrogenesis. J Geophys Res 102(B1):853–874

    Article  Google Scholar 

  • Khalaf EA (2012) Petrology, Geochemistry, and geotectonic implications of intraplate mafic volcanics, Gabal Maghara, North Sinai. Egypt Egyptian J Geol 56:477–508

    Google Scholar 

  • Khalaf EA, Abdel Wahed M, Mayed A, Mokhtar H (2019) Volcanic geosites and their geoheritage values preserved in monogenetic neogene volcanic field, Bahariya depression, Western Desert, Egypt: implication for climatic change-controlling volcanic eruption. Geoheritage 11:855–873. https://doi.org/10.1007/s12371-018-0336-6

    Article  Google Scholar 

  • Khalaf EA, Hammed MS (2016) Morphology and development of pahoehoe flow-lobe tumuli and associated features from a monogenetic basaltic volcanic field, Bahariya depression, Western Desert. Egypt J Afri Earth Sci 113:165–180

    Article  Google Scholar 

  • Klügel A, Hansteen TH, Galipp K (2005) Magma storage and underplating beneath Cumbre Vieja volcano, La Palma (Canary Islands). Earth Planet Sci Lett 236:211–226

    Article  Google Scholar 

  • Kuiper KF, Deino A, Hilgen FJ, Krijgsman W, Renne PR, Wijbrans JR (2008) Synchronizing rock clocks of earth history. Science 320:500–504

    Article  Google Scholar 

  • La Flèche MR, Camiré G, Jenner GA (1998) Geochemistry of post-Cadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen Islands, Québec. Canada Chem Geol 148(3–4):115–136

    Article  Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanetin B (1986) A chemical classification of volcanic rocks based on the total alkalies–silica diagram. J Petrol 27:745–750

    Article  Google Scholar 

  • Leat PT, Thompson RN, Morrison M A, Hendry GL, Dickin AP (1988) Compositionally diverse Miocene-Recent rift-related magmatism in northwest Colorado: Partial melting, and mixing of mafic magmas from different asthenospheric and lithospheric mantle sources, In: Cox KG, Menzies MA (eds), Oceanic and continental lithosphere; similarities and differences: J Petrol, Special Volume: 351–377.

  • Lemnifi A, Elshaafi A, Browning J, El Ebadi S, Gudmundsson A (2017) Crustal thickness beneath Libya and the origin of partial melt beneath AS Sawda Volcanic Province from receiver function constraints. J Geophys Res Solid Earth. https://doi.org/10.1002/2017JB014291

    Article  Google Scholar 

  • Li HY, Xu YG, Ryan JG, Huang XL, Ren ZY, Guo H, Ning ZG (2016) Olivine andmelt inclusion chemical constraints on the source of intracontinental basalts fromthe eastern North China Craton: discrimination of contributions from the subducted Pacific slab. Geochim Cosmochim Acta 178:1–19

    Article  Google Scholar 

  • Liégeois JP, Benhallou A, Azzouni-Sekkal A, Yahiaoui R, Bonin B (2005) The Hoggar swell and volcanism: reactivation of the Precambrian Tuareg shield during Alpine convergence and West African Cenozoic volcanism. In: Foulger GR, Natland JH, Presnall DC, Anderson DL (eds) Plates, plumes, and paradigms. Geol Soc Am (GSA) Sp Pap 388:379–400.

  • Le Roex AP, Watkins RT (1990) Analysis of rare-earth elements in geological samples by gradient ion chromatography: an alternative ICP and INAA. Chem Geol 88:151–162

    Article  Google Scholar 

  • Lucassen F, Franz G, Roomer R, Pudlo D, Dulski P (2008) Nd, Pb, and Sr isotope composition of Late Mesozoic to Quaternary intra-plate magmatism in NE-Africa (Sudan, Egypt): high-m signatures from themantle lithosphere. Contrib Mineral Petrol 156:765–784

    Article  Google Scholar 

  • Luhr JF (2001) Glass inclusions and melt volatile contents at Parı´cutin Volcano, Mexico. Contrib Mineral Petrol 142:261–283

    Article  Google Scholar 

  • Lustrino M, Cucciniello C, Melluso L, Tassinari C, DeʼGennaro R, Serracino M (2012) Petrogenesis of cenozoic volcanic rocks in the NW sector of the Gharyan volcanic field, Libya. Lithos 155:218–235

    Article  Google Scholar 

  • Lustrino M, Wilson M (2007) The circum-Mediterranean anorogenic Cenozoic igneous province. Earth Sci Rev 81:1–65

    Article  Google Scholar 

  • Ma L, Jiang SY, Hou ML, Dai BZ, Jiang YH, Yang T, Zhao KD, Pu W, Zhu ZY, Xu B (2014) Geochemistry of early cretaceous calc-alkaline lamprophyres in the Jiaodong Peninsula: implication for lithospheric evolution of the eastern North China Craton. Gond Res 25(2):859–872

    Article  Google Scholar 

  • Ma L, Jiang SY, Hofmann AW, Xu YG, Dai BZ, Hou ML (2016) Rapid lithospheric thinning of the North China craton: new evidence from cretaceous mafic dikes in the Jiaodong Peninsula. Chem Geol 432:1–15

    Article  Google Scholar 

  • Ma GSK, Malpas J, Xenophontos C, Chan GHN (2011) Petrogenesis of latest miocene- quaternary continental intraplate volcanism along the Northern Dead Sea fault system (Al Ghab-HomsVolcanic field), western Syria: evidence for lithosphere- asthenosphere interaction. J Petrol 52:401–430

    Article  Google Scholar 

  • Mallmann G, O'Neill H (2009) The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr, and Nb). J Petrol 50:1765–1794

    Article  Google Scholar 

  • Mazzarini F, Rooney TO, Isola I (2013) The intimate relationship between strain and magmatism: a numerical treatment of clustered monogenetic fields in the Main Ethiopian Rift. Tectonics 32:49–64

    Article  Google Scholar 

  • Mazzini A, Lupi M, Sciarra A, Hammed M, Schmidt ST, Suessenberger A (2019) Concentric Structures and Hydrothermal Venting in the Western Desert, Egypt. Front Earth Sci. https://doi.org/10.3389/feart.2019.00266

    Article  Google Scholar 

  • McCoy-West AJ, Baker JA, Faure K, Wysoczansk R (2010) Petrogenesis and origins of Mid-Cretaceous continental IntraplateVolcanism in Marlborough, New Zealand: implications for the long lived HIMU magmatic mega-province of the SW Pacific. J Petrol 51:2003–2045

    Article  Google Scholar 

  • McCoy-West AJ, Bennett VC, Yuri A (2016) Rapid Cenozoic ingrowth 1 of isotopic signatures simulating “HIMU” in ancient lithospheric mantle: distinguishing source from process. Geochim Cosmochim Acta 187:79–101

    Article  Google Scholar 

  • McGee LE, Smith IEM, Millet MA, Handley HK, Lindsay JM (2013) Asthenospheric control of melting processes in a monogenetic basaltic system: a case study of the Auckland Volcanic Field, New Zealand. J Petrol 54:2125–2153

    Article  Google Scholar 

  • McKenzie D, O’Nions RK (1991) Partial melt distributions from inversion of rare Earth element concentrations. J Petrol 32:1021–1091

    Article  Google Scholar 

  • Melluso L, Cucciniello C, le Roex AP, Morra V (2016) The geochemistry of primitive volcanic rocks of the Ankaratra volcanic complex, and source enrichment processes in the genesis of the Cenozoic magmatism in Madagascar. Geochim Cosmochim Acta 185:435–452

    Article  Google Scholar 

  • Meneisy MY (1990) Vulcanicity. In: Said R (ed) The geology of Egypt. Balkema, Rotterdam, pp 157–172

    Google Scholar 

  • Metzner C, Grimmeisen W (1990) Mona: a user friendly computer program for calculating mineralogy of rocks from chemical analyses. Eur J Miner 2:735–738

    Article  Google Scholar 

  • Miller DM, Goldstein SL, Langmuir CH (1994) Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents. Nature 368:514–520

    Article  Google Scholar 

  • Moustafa AR, Saoudi A, Moubasher A, Ibrahim IM, Molokhia H, Schwartz B (2003) Structural setting and tectonic evolution of the Bahariya Depression, Western Desert, Egypt. GeoArabia 8(1):91–124

    Google Scholar 

  • Moghazi A (2003) Geochemistry of a tertiary continental basalt suite, Red Sea coastal plain, Egypt: petrogenesis and characteristics of the mantle source region. Geol Mag 140:11–24

    Article  Google Scholar 

  • Nagy RM, Ghuma MA, Rogers JJW (1976) A crustal suture and lineament in North Africa. Tectonophys 31:T67–T72

    Article  Google Scholar 

  • Natali C, Beccaluva L, Bianchini G, Siena F (2011) Rhyolites associated to Ethiopian CFB: clues for initial rifting at the Afar plume axis. Earth Planet Sci Lett 312:59–68

    Article  Google Scholar 

  • Németh K (2010) Monogenetic volcanic fields: origin, sedimentary record, and relationship with polygenetic volcanism. In: Cañón-Tapia E, Szakács A (eds) What is a Volcano? Special Papers, vol 470. Geological Society of America, Boulder, Colorado, pp 43–67

    Google Scholar 

  • Nemeth K, White JDL, Reay A, Martin U (2003) Compositional variation during monogenetic volcano growth and its implications for magma supply to continental volcanic fields. J Geol Soci Lond 160:523–530

    Article  Google Scholar 

  • Nimis P (1995) A clinopyroxene geobarometer for basaltic systems based on crystalsstructure modeling. Contrib Miner Petrol 121:115–125

    Article  Google Scholar 

  • Niu YL, OʼHara MJ, (2007) Origin of ocean island basalta: a new perspective from petrology, geochemistry, and mineral physics considerations. J Geophys Res 108(B4):2209

    Google Scholar 

  • Niu Y, Wilson M, Humphreys ER, O'Hara MJ (2012) A trace element perspective on the source of ocean island basalts (OIB) and fate of subducted ocean crust (SOC) and mantle lithosphere (SML). Episodes 35(2):310–327

    Article  Google Scholar 

  • Nixon S, Maclennan J, White N (2011) Intra-plate magmatism of the Al Haruj Volcanic Field, Libya. In: Goldschmidt conference abstracts.

  • Pang KN, Chung SL, Zarrinkoub MH, Mohammadi SS, Yang HM, Chu CH, Lee HY, Lo CH (2012) Age, geochemical characteristics and petrogenesis of late Cenozoic intraplate alkali basalts in the Lut-Sistan region, eastern Iran. Chem Geol 306–307:40–53

    Article  Google Scholar 

  • Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48

    Article  Google Scholar 

  • Pearce J (2014) Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ, Norry HJ (eds) Continental basalts and mantle xenoliths. Shiva, Nantwich, pp 230–249

    Google Scholar 

  • Pik R, Deniel C, Coulon C, Yirgu G, Hoffmann C, Ayalew D (1998) The northwestern Ethiopian Plateau flood basalts: classification and spatial distribution of magma types. J Volcanol Geotherm Res 81:91–111

    Article  Google Scholar 

  • Pilet S, Baker MB, Stolper EM (2008) Metasomatized lithosphere and the origin of alkaline lavas. Science 320:916–919

    Article  Google Scholar 

  • Pilet S, Baker MB, Münterner O, Stolper EM (2011) Monte Carlo simulations of metasomatic enrichment in the lithosphere and implications for the source of alkaline basalts. J Petrol 52(7–8):1415–1442

    Article  Google Scholar 

  • Piromallo C, Gasperini D, Macera P, Faccenna C (2008) A late Cretaceous contamination episode of the European-Mediterranean mantle. Earth Planet Sci Letts 266(1–2):15–27

    Article  Google Scholar 

  • Plank T (2005) Constraints from Thorium/Lanthanumon sediment recycling at subduc- tionzones and the evolution of the continents. J Petrol 46:921–944

    Article  Google Scholar 

  • Price RC, Gray CM, Frey FA (1997) Strontium isotopic and trace element heterogeneity in the plains basalts of the Newer Volcanic Province, Victoria, Australia. Geochim Cosmochim Acta 61:171–192

    Article  Google Scholar 

  • Putirka K (2008) Thermometers and barometers for volcanic systems. Rev Miner Geochem 69:61–120

    Article  Google Scholar 

  • Putirka K, Johnson M, Kinzler R, Walker D (1996) Thermobarometry of mafic igneous rocks based onclinopyroxene-liquid equilibria, 0–30 kbar. Contrib Miner Petrol 123:92–108

    Article  Google Scholar 

  • Putirka K, Ryerson FJ, Mikaelian H (2003) New igneous thermobarometers for mafic and evolved lava compositions, based on clinopyroxene + liquid equilibria. Am Miner 88:1542–1554

    Article  Google Scholar 

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Miner Petrol 29:275–289

    Article  Google Scholar 

  • Rooney T, Furman T, Bastow ID, Ayalew D, Gezahegn Y (2007) Lithospheric modification during crustal extension in the Main Ethiopian Rift. J Geophys Res 112:B10201. https://doi.org/10.1029/2006JB004916

    Article  Google Scholar 

  • Rooney TO, Bastow ID, Keir D (2011) Insights into extensional processes during magma assisted rifting: evidence from aligned scoria cones. J Volcanol Geotherm Res 201:83–96

    Article  Google Scholar 

  • Rooney TO, Hart WK, Hall CM, Ayalew D, Ghiorso MS, Hidalgo P, Yirgu G (2012) Peralkaline magma evolution and the tephra record in the Ethiopian Rift. Contrib Mineral Petrol 164:407–426

    Article  Google Scholar 

  • Rooney TO, Bastow ID, Keir D, Mazzarini F, Movsesian E, Grosfils EB, Zimbelman JR, Ramsey MS, Ayalew D, Yirgu G (2014a) The protracted development of focused magmatic intrusion during continental rifting. Tectonics 33(6):875–897

    Article  Google Scholar 

  • Rooney TO, Nelson WR, Dosso L, Furman T, Hanan B (2014b) The role of continental lithosphere metasomes in the production of HIMU-like magmatism on the northeast African and Arabian plates. Geology 42(5):419–422

    Article  Google Scholar 

  • Reiners PW (2002) Temporal compositional trends in intraplate basalt eruptions: implications for mantle heterogeneity and melting processes. Geochem Geophys Geosyst. https://doi.org/10.1029/2001GC000250

    Article  Google Scholar 

  • Rooney TO, Nelson WR, Ayalew D, Hanan B, Yirgu G, Kappelman J (2017) Melting the lithosphere:metasomes as a source for mantle-derived magmas. Earth Planet Sci Letts 461:105–118

    Article  Google Scholar 

  • Rosenthal A, Foley SF, Pearson DG, Nowell GM, Tappe S (2009) Petrogenesis of strongly alkaline primitive volcanic rocks at the propagating tip of the western branch of the East African Rift. Earth Planet Sci Lett 284:236–248

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) The composition of the continental crust. In: Rudnick RL (ed) The crust, pp 1–64

  • Ruppel C (1995) Extensional processes in continental lithosphere. J Geophys Res 100(B12):24187–24215

    Article  Google Scholar 

  • Salah A, Mousa H, Mohamed H, Azek A, Karem S, Farag M (1999) Paleomagnetic results on the main volcanic occurrences from Bahariya Oasis, Western Desert, Egypt. In: EGE Proc of the 17 th Ann Meet, pp 1–26.

  • Sano TT, Fukuoka M, Ishimoto M (2011) Petrological constraints on magma evolution of the Fuji volcano: a case study for the 1707 Hoei eruption. Mem Nat Mus Na Sci 47:471–496

  • Sano T, Shirao M, Tani K, Tsutsumi Y, Kiyokawa S, Fujii T (2016) Progressive enrichment of arc magmas caused by the subduction of seamounts under Nishinoshima volcano, Izu-Bonin Arc, Japan. J Volcanol Geotherm Res 319:52–65

    Article  Google Scholar 

  • Schilling JG, Kingsley RH, Hanan BB, McCully BL (1992) Nd–Sr–Pb isotopic variations along the Gulf of Aden—evidence for afar mantle plume continental lithosphere interaction. J Geophys Res Solid Earth 97:10927–10966

    Article  Google Scholar 

  • Schmeling H (1985) Partial melt below Iceland: a combined interpretation of seismic and conductivity data. J Geophys Res 90:105–110

    Article  Google Scholar 

  • Schmeling H (2010) Mechanisms of active and passive rifting. Tectonophysics 94:39–50

    Google Scholar 

  • Sehim A (1993) Wrenching tectonics in Egypt. J Geol 37–1:335–372

    Google Scholar 

  • Sengor AMC, Burke K (1978) Relative timing of rifting and volcanism on Earth and its tectonic implications. Geophys Res Lett 5:419–421

    Article  Google Scholar 

  • Shallaly NA, Beier C, Haase KM, Hammed MS (2013) Petrology and geochemistry of the Tertiary Suez rift volcanism, Sinai, Egypt. J Volcanol Geotherm Res 267:119–137

    Article  Google Scholar 

  • Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosnochim Acta 34(237–37):259

    Google Scholar 

  • Shaw JE, Baker JA, Kent AJR, Ibrahim KM, Menzies MA (2007) The geochemistry of the Arabian lithospheric Mantle source for Intraplate volcanism? J Petrol 48:1495–1512

    Article  Google Scholar 

  • Shaw JE, Baker JA, Menzies MA, Thirlwall MF, Ibrahim KM (2003) Petrogenesis of the largest intraplate volcanic field on the Arabian plate (Jordan): a mixing lithosphere-asthenosphere source activated by lithosphere extension. J Petrol 44:1657–1679

    Article  Google Scholar 

  • Shellnutt JG (2014) The Emeishan large igneous province: a synthesis. Geosci Front 5:369–394

    Article  Google Scholar 

  • Simonov VA, Mikolaichuk AV, Safonova IY, Kotlyarov AV, Kovyazin SV (2015) Late Paleozoic-Cenozoic intra-plate continental basaltic magmatism of the Tienshan–Junggar region in the SW Central Asian Orogenic Belt. Gondwana Res 27:1646–1666

    Article  Google Scholar 

  • Smith LEM, Blakes S, Wilson JN, Houghton BF (2008a) Deep-seated fractionation during the rise of a small-volume basalt magma batch: Crater Hill, Auckland, New Zealand. Contrib Mineral Petrol 155:511–527

    Article  Google Scholar 

  • Song XY, Keays RR, Xiao L, Qi HW, Ihlenfeld C (2009) Platinum group element geochemistry of the continental flood basalts in the central Emeisihan Large Igneous Province, SW China. Chem Geol 262:246–261

    Article  Google Scholar 

  • Smith LEM, Blacke C, Wilson CJN, Houghton BF (2008b) Deep-seated fractionation during the rise of a small-volume basalt magma batch: Crater Hill, Auckland, New Zealand. Contrib Miner Petrol 155:511–527

    Article  Google Scholar 

  • Smith EI, Sánchez A, Walker JD, Wang K (1999) Geochemistry of mafic magmas in the Hurricane Volcanic field, Utah:implications for small-and large-scale chemical variability of the lithospheric mantle. J Geol 107:433–448

    Article  Google Scholar 

  • Spohn T, Schubert G (1982) Convective thinning of the lithosphere: a mechanism for the initiation of continental rifting. J Geophys Res 87:4669–4681

    Article  Google Scholar 

  • Stein M, Goldstein SL (1996) From plume head to continental lithosphere in the Arabian-Nubian Shield. Nature 382:773–778

    Article  Google Scholar 

  • Stein M, Hofmann AW (1992) Fossil plumes beneath the Arabian lithosphere. Earth Planet Sci Lett 114:193–209

    Article  Google Scholar 

  • Stern RJ, Johnson P (2010) Continental lithosphere of the Arabian Plate: a geologic, petrologic, and geophysical synthesis. Earth Sci Rev 101:29–67

    Article  Google Scholar 

  • Stormer JC, Nicholls J (1978) XLFRAC: a program for the interactive testing of magmatic differentiation models. Comput Geosci 4:143–159

    Article  Google Scholar 

  • Stracke A, Bourdon B (2009) The importance of melt extraction for tracing mantle heterogeneity. Geochim Cosmochim Acta 73:218–238

    Article  Google Scholar 

  • Strong M, Wolff J (2003) Compositional variations within scoria cones. Geol 31:143–146

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Geological Society of London Special Publication, vol 42, pp 313-345

  • Szymanski E (2013) Timing, kinematics and spatial distribution of Miocene extension in the central Arabian margin of the Red Sea rift system. Ph.D.thesis, University of Kansas, Lawrence pp 430.

  • Tatsumi Y (1989) Migration of fluid phases and genesis of basalt magmas in subduction zones. J Geophys Res 94:4697–4707

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition 1 and evolution. Blackwell Scientific Publication, Oxford

    Google Scholar 

  • Toplis MJ, Corgne A (2002) An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium. Contrib Mineral Petrol 144:22–37

    Article  Google Scholar 

  • Valentine GA, GreggT KP (2008) Continental basaltic volcanoesç Processes and problems. J Volcanol Geotherm Res 177:857–873

    Article  Google Scholar 

  • Valentine GA, Krier DJ, Perry FV, Heiken G (2007) Eruptive and geomorphic processes at the Lathrop Wells scoria cone volcano. J Volcanol Geotherm Res 161:57–80

    Article  Google Scholar 

  • Valentine GA, Perry FV (2007) Tectonically controlled, timepredictable basaltic volcanism from a lithospheric mantle source (central Basin and Range Province, USA). Earth Planet Sci Lett 261:201–216

    Article  Google Scholar 

  • Van Otterloo J, Raveggi M, Cas RAF, Maas R (2014) Polymagmatic activity at the monogenetic Mt GambierVolcanic Complex in the Newer Volcanics Province, SE Australia: new insights into the occurrence of intraplate volcanic activity in Australia. J Petrol 55:1317–1351

    Article  Google Scholar 

  • Volker F, McCulloch MT, Altherr R (1993) Submarine basalts from the Red Sea: new Pb, Sr, and Nd isotopic data. Geophys Res Lett 20:927–930

    Article  Google Scholar 

  • Volker F, Altherr R, Jochum KP, McCulloch MT (1997) Quaternary volcanic activity of the southern Red Sea: new data and assessment of models on magma sources and afar plume lithosphere interaction. Tectonophys 278:15–29

    Article  Google Scholar 

  • Walker GP L (1993) Basaltic-volcano systems. In: Prichard HM, AlabasterT, Harris NBW, Neary CR (eds) Magmatic processes and plate tectonics. Geological Society of London Special Publication, vol 76, pp 3–38

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39(1):29–60

    Article  Google Scholar 

  • Wang Q, Wyman DA, Xu J, Jian P, Zhao Z, Li C, Xu W, Ma J, He B (2009) Early cretaceous adakitic granites in the Northern Dabie complex, Central China: Implications for partial melting and delamination of thickened lower crust. Geochim Cosmochim Acta 71(10):2609–2636

    Article  Google Scholar 

  • Wang Y, Zeng L, Asimow DM, Li E, Ma C, Antoshechkina PM, Guo C, Hou K, Tang S (2018) Early Cretaceous high-Ti and low-Ti mafic magmatism in Southeastern Tibet: Insights into magmatic evolution of the Comei Large Igneous Province. Lithos 296–299:396–411

    Article  Google Scholar 

  • Wang J, Su Y, Zheng J, Gao S, Dai H, Xianquan Ping X, Xiong Q, Niyaz K (2019) Geochronology and petrogenesis of Jurassic intraplate alkali basalts in the Junggar terrane, NW China: implication for low- volume volcanism. Lithos 324–325:202–215

    Article  Google Scholar 

  • Weaver BL (1991) The origin of ocean island basalts end-member composition: trace element and isotopic constraints. Earth Planet Sci Lett 104:381–397

    Article  Google Scholar 

  • Weinstein Y, Navon O, Altherr R, Stein M (2006) The Role of lithospheric mantle heterogeneity in the generation of plio-pleistocene alkali basaltic suites from NW Harrat Ash Shaam (Israel). J Petrol 47(5):1017–1050

    Article  Google Scholar 

  • Winchester JA, Floyd PA (1976) Geochemicalmagma type discrimination: application to altered andmetamorphosed basic igneous rocks. Earth Planet Sci Lett 28:459–469

    Article  Google Scholar 

  • Wood BJ (2004) Melting of fertile peridotite with variable amounts of H2O. Geophys Monogr 150:69–80

    Google Scholar 

  • Woodhead JD, Hergt JM, Davidson JP, Eggins SM (2001) Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes. Earth Planet Sci Lett 192(3):331–346

    Article  Google Scholar 

  • Yang W, Niu H, Shan Q, Luo Y, Sun W, Li C, Li N, Yu X (2012) Late paleozoic calc alkaline to shoshonitic magmatism and its geodynamic implications, Yuximolegai area, western Tianshan, Xinjiang. Gondwana Res 22:325–340

    Article  Google Scholar 

  • Zhai DC, Pan GT, Mo XX, Wang LQ, Zhao ZD, Liao ZL, Geng QR, Dong GC (2007) Identification for the Mesozoic OIB-type Basalts in Central Qinghai-Tibetan Plateau: geochronology, Geochemistry and their tectonic setting. Acta Geol Sin 80(9):1312–1328

    Google Scholar 

  • Zhang M, Guo Z, Cheng Z, Zhang L, Liu J (2015) Late cenozoic intraplate volcanism in Changbai volcanic field, on the border of China and North Korea: insights into deep subduction of the Pacific slab and intraplate volcanism. J Geol Soc 172(5):648–663

    Article  Google Scholar 

  • Zhu X, Song Y, Frey FA, Feng J, Zhai M (2011) Geochemistry of Hannuoba basalts, eastern China: Constraints on the origin of continental alkalic and tholeiitic basalt. Chem Geol 88(1–2):1–33

    Google Scholar 

Download references

Acknowledgements

Funding of this research was partly provided by an invitational fellowship for research in Japan from the Japan Society for the Promotion of Science (JSPS S17025). Geochronological work at USA has been granted by USAID scholars for the first authorʼs visit to New Mexico Technology (NMT), USA in 2015. Many thanks to Dr.Mohamed Abu El Rus, Assuit University, Egypt for his help in geochemical modeling and manuscriptʼs revision. We acknowledge the help of Dr. Sano during XRF and ICP-MS analyses. An anonymous reviewer improved the quality of the paper and is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezz El Din Abdel Hakim Khalaf.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 kb)

Supplementary file2 (PDF 2529 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalaf, E.E.D.A.H., Sano, T. Petrogenesis of Neogene polymagmatic suites at a monogenetic low-volume volcanic province, Bahariya depression, Western Desert, Egypt. Int J Earth Sci (Geol Rundsch) 109, 995–1027 (2020). https://doi.org/10.1007/s00531-020-01849-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-020-01849-1

Keywords

Navigation