Skip to main content

Advertisement

Log in

Quantification of nucleation delay in magmatic systems: experimental and theoretical approach

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We developed a model to predict nucleation delay of olivine, plagioclase, and clinopyroxene in basaltic melts, and alkali feldspar and quartz in felsic melts. The model, based upon classical nucleation theory, was improved by applying modifications inspired by diffuse interface theory. The theoretical calculations were compared to results available in the literature (basalts) and from new experiments on a hydrous (~ 4 wt% water), metaluminous granitic composition conducted in piston cylinder apparatus at 600 MPa and temperatures from 500 to 800 °C. The experimental results and the modelled nucleation delays in silicate melts agree within a factor of ~ 5, which creates an opportunity for better understanding of the nucleation kinetics and crystallization timing of melts of various compositions. We demonstrate the implications of nucleation delay and discuss possible applications of this newly developed model to dry and hydrous felsic melts. We present the nucleation delay of feldspar and quartz in dry rhyolitic melt and its influence on the formation of obsidian, and we compare the nucleation delay of these minerals in a hydrous granitic melt against the typical internal structure of a granitic pegmatite dike.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arzilli F, La Spina G, Burton MR, Polacci M, Le Gall N, Hartley ME, Di Genova D, Cai B, Vo NT, Bamber EC, Nonni S, Atwood R, Llewellin EW, Brooker RA, Mader HM, Lee PD (2019) Magma fragmentation in highly explosive basaltic eruptions induced by rapid crystallization. Nat Geosci. https://doi.org/10.1038/s41561-019-0468-6

    Article  Google Scholar 

  • Baker DR (1990) Chemical interdiffusion of dacite and rhyolite: anhydrous measurements at 1 atm and 10 kbar, application of transition state theory, and diffusion in zoned magma chambers. Contrib Miner Petrol 104:407–423. https://doi.org/10.1007/BF01575619

    Article  Google Scholar 

  • Baker DR (1992) Estimation of diffusion coefficients during interdiffusion of geologic melts: application of transition state theory. Chem Geol 98:11–21. https://doi.org/10.1016/0009-2541(92)90089-N

    Article  Google Scholar 

  • Baker DR (2004) Piston-cylinder calibration at 400 to 500 MPa: A comparison of using water solubility in albite melt and NaCl melting. American Mineralogist 89(10):1553–1556

    Google Scholar 

  • Becker R, Döring W (1935) Kinetische Behandlung der Keimbildung in übersättigten Dämpfen. Ann Phys 416:719–752

    Google Scholar 

  • Berkebile CA, Dowty E (1982) Nucleation in laboratory charges of basaltic composition. Am Miner 67:886–899

    Google Scholar 

  • Biggar GM, O’hara MJ, Peckett A, Humphries DJ (1971) Lunar lavas and the achondrites: petrogenesis of protohypersthene basalts in the maria lava lakes. Lunar Planet Sci Conf Proc 2:617–643

    Google Scholar 

  • Brugger CR, Hammer JE (2010) Crystallization kinetics in continuous decompression experiments: implications for interpreting natural magma ascent processes. J Petrol 51:1941–1965

    Google Scholar 

  • Cameron EN, Jahns RH, McNair AH, Page LR (1949) Internal structure of granitic pegmatites. Econ Geol Monogr 2:115

    Google Scholar 

  • Cassidy M, Manga M, Cashman K, Bachmann O (2018) Controls on explosive-effusive volcanic eruption styles. Nat Commun 9:2839

    Google Scholar 

  • Černý P (1991) Rare-element granite pegmatites. Part I: anatomy and internal evolution of pegmatite deposits. Geosci Can 18:49–67

    Google Scholar 

  • Christian JW (1965) The theory of transformations in metals and alloys. Pergamon Press, New York

    Google Scholar 

  • Collins FC (1955) Time lag in spontaneous nucleation due to non-steady state effects. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie 59:404–409

    Google Scholar 

  • Cooper RF, Kohlstedt DL (1982) Interfacial energies in the olivine-basalt system. In: Akimoto S, Manghnani MH (eds) Advances in Earth and Planetary Sciences, Vol 12: High Pressure Research in Geophysics. Center for Academic Publications, Tokyo, pp 217–228

    Google Scholar 

  • Corrigan G (1982) Supercooling and the crystallization of plagioclase, olivine, and clinopyroxene from basaltic magmas. Mineral Mag 46:31–42

    Google Scholar 

  • Couch S (2003) Experimental investigation of crystallization kinetics in a haplogranite system. Am Miner 88:1471–1485

    Google Scholar 

  • Dalpé C, Baker DR (2000) Experimental investigation of large-ion-lithophile-element-, high-field-strength-element- and rare-earth-element-partitioning between calcic amphibole and basaltic melt: the effects of pressure and oxygen fugacity. Contrib Miner Petrol 140:233–250

    Google Scholar 

  • deGraffenried RL, Larsen JF, Graham NA, Cashman KV (2019) The influence of phenocrysts on degassing in crystal-bearing magmas with rhyolitic groundmass melts. Geophys Res Lett 46:5127–5136

    Google Scholar 

  • De Yoreo JJ, Vekilov PG (2003) Principles of crystal nucleation and growth. Rev Mineral Geochem 54:57–93

    Google Scholar 

  • Dingwell DB (1997) The brittle-ductile transition in high-level granitic magmas: material constraints. J Petrol 38:1635–1644. https://doi.org/10.1093/petroj/38.12.1635

    Article  Google Scholar 

  • Dingwell DB (1995) Viscosity and anelasticity of melts. Mineral Physics and Crystallography. A Handbook of Physical Constants. In: Ahrens TJ (ed) American Geophysical Union Reference Shelf, pp 209–217

  • Donaldson CH (1979) An experimental investigation of the delay in nucleation of olivine in mafic magmas. Contrib Miner Petrol 69:21–32

    Google Scholar 

  • D’Oriano C, Poggianti E, Bertagnini A, Cioni R, Landi P, Polacci M, Rosi M (2005) Changes in eruptive style during the A.D. 1538 Monte Nuovo eruption (Phlegrean Fields, Italy): the role of syn-eruptive crystallization. Bull Volcanol 67:601–621

    Google Scholar 

  • Dowty E (1980) Crystal growth and nucleation theory and the numerical simulation of igneous crystallization. In: Hargraves RB (ed) Physics of magmatic processes. Princeton University Press, Princeton, pp 419–479

    Google Scholar 

  • Evensen JM (2001) The geochemical budget of beryllium in silicic melts and superliquidus, subliquidus, and starting state effects on the kinetics of crystallization in hydrous, haplogranite melts. PhD dissertation, University of Oklahoma, Norman, OK, USA, p 293

  • Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:107. https://doi.org/10.1063/1.1749604

    Article  Google Scholar 

  • Fenn PM (1977) The nucleation and growth of alkali feldspars from hydrous melts. Can Mineral 15:135–161

    Google Scholar 

  • First EC, Leonhardi TC, Hammer JE (2020) Effects of superheating magnitude on olivine growth. Contrib Miner Petrol 175:13. https://doi.org/10.1007/s00410-019-1638-7

    Article  Google Scholar 

  • Fokin VM, Zanotto ED, Yuritsyn NS, Schmelzer JW (2006) Homogeneous crystal nucleation in silicate glasses: a 40 years perspective. J Non-Cryst Solids 352(26):2681–2714

    Google Scholar 

  • Fokin VM, Yuritsyn NS, Zanotto ED, Schmelzer JWP, Cabral AA (2008) Nucleation time-lag from nucleation and growth experiments in deeply undercooled glass-forming liquids. J Non-Cryst Solids 354:3785–3792

    Google Scholar 

  • Furukawa K, Uno K, Kanamaru T, Nakai K (2019) Structural variation and the development of thick rhyolite lava: a case study of the Sanukayama rhyolite lava on Kozushima Island, Japan. J Volcanol Geoth Res 369:1–20

    Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Miner Petrol 119:197–212

    Google Scholar 

  • Gibbs JW (1875–1878) On the equilibrium of heterogeneous substances. Trans Connecticut Acad Arts Sci 108:343

  • Gibb EGE (1974) Supercooling and the crystallization of plagioclase from a basaltic magma. Mineral Mag 39:641–653

    Google Scholar 

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: A model. Earth and Planetary Science Letters 271(1–4):123–134

    Google Scholar 

  • Gránásy L (1993) Diffuse interface approach to vapour condensation. Europhys Lett 24:121–126. https://doi.org/10.1209/0295-5075/24/2/008

    Article  Google Scholar 

  • Gránásy L (1996) Fundamentals of the diffuse interface theory of nucleation. J Phys Chem 100:10768–10770. https://doi.org/10.1021/jp953695c

    Article  Google Scholar 

  • Gránásy L, Pusztai T (2002) Diffuse interface analysis of crystal nucleation in hard-sphere liquid. J Chem Phys 117:10121–10124

    Google Scholar 

  • Gualda GAR, Ghiorso MS, Lemons RV, Carley TL (2012) Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J Petrol 53:875–890

    Google Scholar 

  • Gutzov I, Schmelzer JWP (1995) The vitreous state: thermodynamics, structure, rheology, and crystallization. Springer, New York

    Google Scholar 

  • Hammer JE (2004) Crystal nucleation in hydrous rhyolite: experimental data applied to classical theory. Am Miner 89:1673–1679

    Google Scholar 

  • Hammer JE, Rutherford M (2002) An experimental study of the kinetics of decompression-induced crystallization in silicic melt. J Geophys Res 107:1–23

    Google Scholar 

  • Hudon P, Baker DR, Toft PB (1994) A high-temperature assembly for 1.91-cm (34 in.) piston-cylinder apparatus. Am Miner 79:145–147

    Google Scholar 

  • Jägger JC (1968) Cooling and solidification of igneous rocks. In: Hess HH, Poldervaart A (eds) Basalts, the Poldervaart Treatise on rocks of basaltic composition. Wiley, New York, pp 503–537

    Google Scholar 

  • Jahns RH, Burnham CW (1969) Experimental studies of pegmatite genesis: a model for the derivation and crystallization of granitic pegmatites. Econ Geol 64:843–864

    Google Scholar 

  • James PF (1985) Kinetics of crystal nucleation in silicate glasses. J Non-Cryst Solids 73:517–540

    Google Scholar 

  • Jurewicz SR, Watson EB (1984) Distribution of partial melt in a felsic system: the importance of surface energy. Contrib Miner Petrol 85:25–29. https://doi.org/10.1007/BF00380218

    Article  Google Scholar 

  • Kashchiev D (1969) Solution of the non-steady problem in nucleation kinetics. Surf Sci 14:209–220

    Google Scholar 

  • Kelton KF (2013) Crystal nucleation in supercooled liquid metals. Int J Microgr Sci Appl 30:11–18

    Google Scholar 

  • Kirkpatrick RJ (1981) Kinetics of crystallization of igneous rocks. In: Lasaga AC, Kirkpatrick RJ (eds) Kinetics of geochemical processes, Reviews in Mineralogy, vol 8. pp 321–397

  • Lindoo AN, Larsen JF, Cashman KV, Dunn AL, Neill OK (2016) An experimental study of permeability development as a function of crystal-free melt viscosity. Earth Planet Sci Lett 435:45–55

    Google Scholar 

  • London D (2008) Pegmatites. Can Mineral Spec Publ 10:368

    Google Scholar 

  • London D, Morgan GBVI (2017) Experimental crystallization of the Macusani obsidian, with applications to Lithium-rich granitic pegmatites. J Petrol 58:1005–1030

    Google Scholar 

  • Mader HM, Llewellin EW, Mueller SP (2013) The rheology of two-phase magmas: a review and analysis. J Volcanol Geoth Res 257:135–158

    Google Scholar 

  • Maneta V, Baker DR (2014) Exploring the effect of lithium on pegmatitic textures: An experimental study. American Mineralogist 99(7):1383–1403

    Google Scholar 

  • Manley CR, Fink JH (1987) Internal textures of rhyolite flows as revealed by research drilling. Geology 15:549–552

    Google Scholar 

  • Nabelek PI, Taylor LA, Lofgren GE (1978) Nucleation and growth of plagioclase and the development of textures in a high-alumina basaltic melt. In: Lunar and planetary science conference, 9th, Houston, Tex., March 13–17, 1978, proceedings, vol 1 (A79–39107 16–91). New York, Pergamon Press, Inc., pp 725–741

  • Nabelek PI, Whittington AG, Sirbescu MC (2010) The role of H2O in rapid emplacement and crystallization of granite pegmatites: resolving the paradox of large crystals in highly undercooled melts. Contrib Miner Petrol 160:313–325

    Google Scholar 

  • Polacci M, Arzilli F, La Spina G, Le Gall N, Cai B, Di Hartley ME, Genova D, Vo NT, Nonni S, Atwood RC, Llewellin EW, Lee PD, Burton MR (2018) Crystallisation in basaltic magmas revealed via in situ 4D synchrotron X-ray microtomography. Sci Rep 8:8377

    Google Scholar 

  • Riker JM, Cashman KV, Rust AC, Blundy JD (2015) Experimental constraints on plagioclase crystallization during H2O- and H2O–CO2-saturated magma decompression. J Petrol 56:1967–1998

    Google Scholar 

  • Robie RA, Bethke PM (1962) Molar volumes and densities of minerals. Trace Elements Investig USGS Publ Warehouse. https://doi.org/10.3133/70159012

    Article  Google Scholar 

  • Roskosz M, Toplis MJ, Besson P, Richet P (2005) Nucleation mechanisms: a crystal-chemical investigation of phases forming in highly supercooled aluminosilicate liquids. J Non-Cryst Solids 351:1266–1282

    Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  Google Scholar 

  • Schmelzer JWP (2008) Crystal nucleation and growth in glass-forming melts: experiment and theory. J Non-Cryst Solids 354:269–278

    Google Scholar 

  • Schmelzer JWP, Abyzov AS, Ferreira EB, Fokin VM (2019a) Curvature dependence of the surface tension and crystal nucleation in liquids. Int J Appl Glass Sci 10:57–60

    Google Scholar 

  • Schmelzer JWP, Abyzov AS, Baidakov VG (2019b) Entropy and the Tolman parameter in nucleation theory. Entropy 21:1–45

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A A32:751–767. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  • Simmons WB, Webber KL (2008) Pegmatite genesis: state of the art. Eur J Mineral 20(4):421–438

    Google Scholar 

  • Sirbescu MC, Schmidt C, Veksler IV, Whittington AG, Wilke M (2017) Experimental crystallization of undercooled felsic liquids: generation of pegmatitic texture. J Petrol 58:539–568

    Google Scholar 

  • Slezov VV, Schmelzer JWP (1999) Kinetics of nucleation–growth processes: the first stages. In: Schmelzer JWP, Röpke G, Priezzhev VB (eds.) Nucleation Theory and Applications, pp 6–81

  • Slezov VV, Schmelzer JWP (2002) Kinetics of formation of a phase with an arbitrary stoichiometric composition in a multicomponent solid solution. Phys Rev E 65:031506

    Google Scholar 

  • Swanson SE (1977) Relation of crystal-growth rate to the granitic textures. Am Miner 62:966–978

    Google Scholar 

  • Toramaru A (1991) Model of nucleation and growth of crystals in cooling magmas. Contrib Miner Petrol 108:106–117. https://doi.org/10.1007/BF00307330

    Article  Google Scholar 

  • Turnbull D, Fisher JC (1949) Rate of nucleation in condensed systems. J Chem Phys 17:71–73

    Google Scholar 

  • Vetere F, Iezzi G, Behrens H, Cavallo A, Misiti V, Dietrich M, Knipping J, Ventura G, Mollo S (2013) Intrinsic solidification behaviour of basaltic to rhyolitic melts: a cooling rate experimental study. Chem Geol 354:233–242

    Google Scholar 

  • Volmer M, Weber AZ (1926) Nucleus formation in supersaturated systems. Zeitschrift für Physikalische Chemie 119:277–301

    Google Scholar 

  • Vona A, Di Piazza A, Nicotra E, Romano C, Viccaro M, Giordano G (2017) The complex rheology of megacryst-rich magmas: the case of the mugearitic “cicirara” lavas of Mt. Etna volcano. Chem Geol 458:48–67

    Google Scholar 

  • Waters LE, Lange RA (2017) Why aplites freeze and rhyolites erupt: controls on the accumulation and eruption of high-SiO2 (eutectic) melts. Geology 11:1019–1022

    Google Scholar 

  • Webber KL, Falster AU, Simmons WB, Foord EE (1997) The role of diffusion-controlled oscillatory nucleation in the formation of line rock in pegmatite-aplite dikes. J Petrol 38:1777–1791

    Google Scholar 

  • Webber KL, Simmons WB, Falster AU, Foord EE (1999) Cooling rates and crystallization dynamics of shallow level pegmatite-aplite dikes, San Diego County, California. Am Mineral 84:708–717

    Google Scholar 

  • Zhang Y, Ni H, Chen Y (2010) Diffusion data in silicate melts. Rev Mineral Geochem 72:311–408

    Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for their comments and Gordon Moore for the editorial handling of the manuscript. This research was funded by the National Sciences and Engineering Council (NSERC) of Canada Discovery grant awarded to D. R. B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika K. Rusiecka.

Additional information

Communicated by Gordon Moore.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusiecka, M.K., Bilodeau, M. & Baker, D.R. Quantification of nucleation delay in magmatic systems: experimental and theoretical approach. Contrib Mineral Petrol 175, 47 (2020). https://doi.org/10.1007/s00410-020-01682-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-020-01682-4

Keywords

Navigation