Skip to main content
Log in

Evaluation of the Potential Use of Satellite-Derived XCO2 in Detecting CO2 Enhancement in Megacities with Limited Ground Observations: A Case Study in Seoul Using Orbiting Carbon Observatory-2

  • Original Article
  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Exact assessment of urban atmospheric CO2 enhancement, which is higher than background CO2 concentrations, is critical to mitigate carbon emissions in the city. However, ground-based atmospheric CO2 measurements covering the diverse landscape across the city are still limited. This study utilizes the column integrated CO2 concentration (XCO2) data obtained from the NASA Orbiting Carbon Observatory-2 (OCO-2) to evaluate urban CO2 enhancements over Seoul Capital Area (SCA) of South Korea for the period 2014–2018. In this study, Jirisan National Park (JNP), which is the cleanest area on the same orbit track with SCA, is defined as the background area considering its strong vegetation activity and low anthropogenic carbon emissions. By comparing XCO2 between SCA and JNP based on wind speed, we find an apparent increase in XCO2 by 1.71 to 2.21 ppm over SCA only on the days with wind speed less than 4 m s−1. Strong wind speed (e.g., over 4 m s−1) disrupts the identification of XCO2 enhancements over SCA due to atmospheric mixing between SCA and JNP. In addition, we compare estimated XCO2 differences between SCA and JNP from OCO-2 with other low-resolution data. This increase in XCO2 over SCA is only observed in OCO-2. Overall, our results suggest that high-resolution satellite remote sensing of XCO2 constrained by wind speed has strong potential to open up the possibility of identifying atmospheric CO2 enhancements in the city where ground-based observations are limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bader, N., Bleischwitz, R.: Measuring urban greenhouse gas emissions: the challenge of comparability. SAPI EN. S. Surveys and Perspectives Integrating Environment and Society, (2.3) (2009)

  • Baldasano, J.M., Soriano, C., Boada, L.: Emission inventory for greenhouse gases in the City of Barcelona, 1987–1996. Atmos. Environ. 33(23), 3765–3775 (1999)

    Article  Google Scholar 

  • Bréon, F.M., Broquet, G., Puygrenier, V., Chevallier, F., Xueref-Remy, I., Ramonet, M., et al.: An attempt at estimating Paris area CO 2 emissions from atmospheric concentration measurements. Atmos. Chem. Phys. 15(4), 1707–1724 (2015)

    Article  Google Scholar 

  • Crisp, D., Pollock, H.R., Rosenberg, R., Chapsky, L., Lee, R.A., Oyafuso, F.A., et al.: The on-orbit performance of the orbiting carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products. Atmospheric Measurement Techniques. 10(1), 59–81 (2017)

    Article  Google Scholar 

  • Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., et al.: The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011)

    Article  Google Scholar 

  • Fang, S.X., Tans, P.P., Dong, F., Zhou, H., Luan, T.: Characteristics of atmospheric CO2 and CH4 at the Shangdianzi regional background station in China. Atmos. Environ. 131, 1–8 (2016)

    Article  Google Scholar 

  • Frankenberg, C., Fisher, J.B., Worden, J., Badgley, G., Saatchi, S.S., Lee, J.E., et al.: New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 38(17), (2011)

  • Frey, M., Sha, M. K., Hase, F., Kiel, M., Blumenstock, T., Harig, R., ..., Bosch, H.: Building the COllaborative Carbon Column Observing Network (COCCON): long-term stability and ensemble performance of the EM27/SUN Fourier transform spectrometer (2019)

  • Graven, H., Fischer, M.L., Lueker, T., Jeong, S., Guilderson, T.P., Keeling, R.F., et al.: Assessing fossil fuel CO2 emissions in California using atmospheric observations and models. Environ. Res. Lett. 13(6), 065007 (2018)

    Article  Google Scholar 

  • Griffith, D. W., Toon, G. C., Connor, B., Sussmann, R., Warneke, T., Deutscher, N. M., ..., Uchino, O.: Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra (2011)

  • Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J.A., et al.: Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc. Natl. Acad. Sci. 111(14), E1327–E1333 (2014)

    Article  Google Scholar 

  • Hakkarainen, J., Ialongo, I., Tamminen, J.: Direct space-based observations of anthropogenic CO2 emission areas from OCO-2. Geophys. Res. Lett. 43(21), 11–400 (2016)

    Article  Google Scholar 

  • Hutyra, L. R., Raciti, S., Phillips, N. G., Munger, J. W.: Exploring space-time variation in urban carbon metabolism. Addressing Grand Challenges for Global Sustainability, 11 (2011)

  • Hutyra, L.R., Duren, R., Gurney, K.R., Grimm, N., Kort, E.A., Larson, E., Shrestha, G.: Urbanization and the carbon cycle: current capabilities and research outlook from the natural sciences perspective. Earth’s Future. 2(10), 473–495 (2014)

    Article  Google Scholar 

  • IPCC, R., & Revised, I.E.A.: IPCC guidelines for national greenhouse gas inventories. Prepared by the National Greenhouse Gas Inventories Programme. 10–1 (2006)

  • IPCC: 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (2019)

  • Janardanan, R., Maksyutov, S., Oda, T., Saito, M., Kaiser, J.W., Ganshin, A., et al.: Comparing GOSAT observations of localized CO2 enhancements by large emitters with inventory-based estimates. Geophys. Res. Lett. 43(7), 3486–3493 (2016)

    Article  Google Scholar 

  • Jeong, S.J., Schimel, D., Frankenberg, C., Drewry, D.T., Fisher, J.B., Verma, M., et al.: Application of satellite solar-induced chlorophyll fluorescence to understanding large-scale variations in vegetation phenology and function over northern high latitude forests. Remote Sens. Environ. 190, 178–187 (2017)

    Article  Google Scholar 

  • Keeling, R.F., Piper, S.C., Heimann, M.: Global and hemispheric CO 2 sinks deduced from changes in atmospheric O 2 concentration. Nature. 381(6579), 218 (1996)

    Article  Google Scholar 

  • Korean Statistical Information Service: http://kosis.kr/eng/ (2019)

  • Kort, E.A., Frankenberg, C., Miller, C.E., Oda, T.: Space-based observations of megacity carbon dioxide. Geophys. Res. Lett. 39(17), (2012)

  • Labzovskii, L.D., Jeong, S.J., Parazoo, N.C.: Working towards confident spaceborne monitoring of carbon emissions from cities using orbiting carbon Observatory-2. Remote Sens. Environ. 233, 111359 (2019)

    Article  Google Scholar 

  • Le Quéré, C., Andrew, R.M., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., et al.: Global carbon budget 2018. Earth System Science Data (Online). 10(4), (2018)

  • Lee, J.K., Christen, A., Ketler, R., Nesic, Z.: A mobile sensor network to map carbon dioxide emissions in urban environments. Atmos Meas Tech. 10(2), (2017)

  • Levin, I., Hammer, S., Kromer, B., Meinhardt, F.: Radiocarbon observations in atmospheric CO2: determining fossil fuel CO2 over Europe using Jungfraujoch observations as background. Sci. Total Environ. 391(2–3), 211–216 (2008)

    Article  Google Scholar 

  • Liu, Z., Geng, Y., Xue, B.: Inventorying energy-related CO2 for city: Shanghai study. Energy Procedia. 5, 2303–2307 (2011)

    Article  Google Scholar 

  • Lu, X., Cheng, X., Li, X., Tang, J.: Opportunities and challenges of applications of satellite-derived sun-induced fluorescence at relatively high spatial resolution. Sci. Total Environ. 619, 649–653 (2018)

    Article  Google Scholar 

  • Miller, S.M., Michalak, A.M., Yadav, V., Tadić, J.M.: Characterizing biospheric carbon balance using CO 2 observations from the OCO-2 satellite. Atmos. Chem. Phys. 18(9), 6785–6799 (2018)

    Article  Google Scholar 

  • Mitchell, J.F.: The “greenhouse” effect and climate change. Rev. Geophys. 27(1), 115–139 (1989)

    Article  Google Scholar 

  • Moran, D., Kanemoto, K., Jiborn, M., Wood, R., Többen, J., Seto, K.C.: Carbon footprints of 13 000 cities. Environ. Res. Lett. 13(6), 064041 (2018)

    Article  Google Scholar 

  • Nangini, C., Peregon, A., Ciais, P., Weddige, U., Vogel, F., Wang, J., et al.: A global dataset of CO 2 emissions and ancillary data related to emissions for 343 cities. Sci. Data. 6, 180280 (2019)

    Article  Google Scholar 

  • Oda, T., Maksyutov, S., Andres, R.J.: The open-source data inventory for anthropogenic CO 2, version 2016 (ODIAC2016): a global monthly fossil fuel CO 2 gridded emissions data product for tracer transport simulations and surface flux inversions. Earth Syst. Sci. Data. 10(1), 87–107 (2018)

    Article  Google Scholar 

  • Peters, W., Jacobson, A.R., Sweeney, C., Andrews, A.E., Conway, T.J., Masarie, K., Miller, J.B., Bruhwiler, L.M.P., Petron, G., Hirsch, A.I., Worthy, D.E.J., van der Werf, G.R., Randerson, J.T., Wennberg, P.O., Krol, M.C., Tans, P.P.: An atmospheric perspective on north American carbon dioxide exchange: CarbonTracker. Proc. Natl. Acad. Sci. U. S. A. 104, 18925–18930 (Jan 2007). https://doi.org/10.1073/pnas.0708986104

    Article  Google Scholar 

  • Reuter, M., Buchwitz, M., Schneising, O., Krautwurst, S., O’Dell, C.W., Richter, A., et al.: Towards monitoring localized CO2 emissions from space: co-located regional CO2 and NO2 enhancements observed by the OCO-2 and S5P satellites. Atmos. Chem. Phys. Discuss. 1–19 (2019)

  • Rypdal, K., Winiwarter, W.: Uncertainties in greenhouse gas emission inventories—evaluation, comparability and implications. Environ. Sci. Pol. 4(2–3), 107–116 (2001)

    Article  Google Scholar 

  • Schwandner, F.M., Gunson, M.R., Miller, C.E., Carn, S.A., Eldering, A., Krings, T., et al.: Spaceborne detection of localized carbon dioxide source. Science. 358(6360), eaam5782 (2017)

    Article  Google Scholar 

  • Shan, C., Wang, W., Liu, C., Sun, Y., Hu, Q., Xu, X., et al.: Regional CO emission estimated from ground-based remote sensing at Hefei site, China. Atmos. Res. 222, 25–35 (2019)

    Article  Google Scholar 

  • Shiga, Y.P., Tadić, J.M., Qiu, X., Yadav, V., Andrews, A.E., Berry, J.A., Michalak, A.M.: Atmospheric CO2 observations reveal strong correlation between regional net biospheric carbon uptake and solar-induced chlorophyll fluorescence. Geophys. Res. Lett. 45(2), 1122–1132 (2018)

    Article  Google Scholar 

  • Shim, C., Han, J., Henze, D.K., Yoon, T.: Identifying local anthropogenic CO2 emissions with satellite retrievals: a case study in South Korea. Int. J. Remote Sens. 40(3), 1011–1029 (2019)

    Article  Google Scholar 

  • Silva, S., Arellano, A.: Characterizing regional-scale combustion using satellite retrievals of CO, NO2 and CO2. Remote Sens. 9(7), 744 (2017)

    Article  Google Scholar 

  • Sun, Y., Frankenberg, C., Wood, J.D., Schimel, D.S., Jung, M., Guanter, L., et al.: OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science. 358(6360), eaam5747 (2017)

    Article  Google Scholar 

  • Sun, Y., Frankenberg, C., Jung, M., Joiner, J., Guanter, L., Köhler, P., Magney, T.: Overview of solar-induced chlorophyll fluorescence (SIF) from the orbiting carbon Observatory-2: retrieval, cross-mission comparison, and global monitoring for GPP. Remote Sens. Environ. 209, 808–823 (2018)

    Article  Google Scholar 

  • The Seoul Institute: Policy Report No. 267(20190121)-Development and Application of Biodiversity indicators in the Park Green Area of Seoul (2019)

  • Un-habitat, & United Nations Human Settlements Programme: State of the world's Cities 2010/2011: Bridging the Urban Divide. Routledge (2010)

  • United Nations Human Settlements Programme: Cities and Climate Change: Global Report on Human Settlements, 2011. Routledge (2011)

  • Verma, M., Schimel, D., Evans, B., Frankenberg, C., Beringer, J., Drewry, D.T., et al.: Effect of environmental conditions on the relationship between solar-induced fluorescence and gross primary productivity at an OzFlux grassland site. Journal of Geophysical Research: Biogeosciences. 122(3), 716–733 (2017)

    Google Scholar 

  • Wang, S., Ju, W., Peñuelas, J., Cescatti, A., Zhou, Y., Fu, Y., et al.: Urban− rural gradients reveal joint control of elevated CO 2 and temperature on extended photosynthetic seasons. Nat. Ecol. Evol. 1, (2019)

  • Xueref-Remy, I., Dieudonné, E., Vuillemin, C., Lopez, M., Lac, C., Schmidt, M., et al.: Diurnal, synoptic and seasonal variability of atmospheric CO 2 in the Paris megacity area. Atmos. Chem. Phys. 18(5), 3335–3362 (2018)

    Article  Google Scholar 

  • Yokota, T., Yoshida, Y., Eguchi, N., Ota, Y., Tanaka, T., Watanabe, H., Maksyutov, S.: Global concentrations of CO2 and CH4 retrieved from GOSAT: first preliminary results. Sola. 5, 160–163 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Government of Korea (NRF-2019R1A2C3002868). We thank Annmarie Eldering and Nicholas Parazoo for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujong Jeong.

Additional information

Responsible Editor: Yunsoo Choi.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, C., Jeong, S., Park, H. et al. Evaluation of the Potential Use of Satellite-Derived XCO2 in Detecting CO2 Enhancement in Megacities with Limited Ground Observations: A Case Study in Seoul Using Orbiting Carbon Observatory-2. Asia-Pacific J Atmos Sci 57, 289–299 (2021). https://doi.org/10.1007/s13143-020-00202-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-020-00202-5

Keywords

Navigation