Skip to main content
Log in

Leaching behavior of phosphorous compounds from sewage sludge ash based on quantitative X-ray diffraction analysis

  • Article
  • Published:
Waste Disposal & Sustainable Energy Aims and scope Submit manuscript

A Correction to this article was published on 27 August 2021

This article has been updated

Abstract

Phosphorus (P) is an essential and limited resource. Incineration sewage sludge ash (ISSA) contains a high amount of P, which can be recovered using chemical leaching methods. However, the recovery ratio depends on the speciation of P and the leaching conditions. In this study, hydrochloric acid was used as a leaching agent, and the effects of the hydrochloric acid concentration, leaching time, temperature, and liquid–solid ratio on the P leaching ratio were investigated. Furthermore, the co-leaching of macro-metals Ca, Al, Fe, and Mg was analyzed. The results showed that P leached rapidly within 30 min, where the leaching rate reached more than 80% and then gradually stabilized. The leaching concentrations of Ca and Mg had a significant correlation (correlation coefficient r2 > 0.90), and both were leached completely. Al and P had similar leaching patterns, where the leaching rates increased initially and then decreased with time at 0.2 mol/L HCl. According to X-ray diffraction analysis and Rietveld refinement, the P in ISSA was mainly present in the forms of Mg3Ca3(PO4)4 and AlPO4. When leached using 0.2 mol/L HCl at 55 °C with a liquid-to-solid ratio of 20 L/kg, the AlPO4 and Fe3(H2O)3(PO4)2 in ISSA dissolved initially and then precipitated on the surface of the solid phase, thereby impeding further P leaching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Petzet S, Peplinski B, Cornel P. On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both. Water Res. 2012;46(12):3769–80. https://doi.org/10.1016/j.watres.2012.03.068.

    Article  CAS  Google Scholar 

  2. Jasinski SM. Minerals Yearbook: phosphate rock. Phosphate rock. U.S.Geological Survey; 2016.

  3. Cordell D, Drangert J-O, White S. The story of phosphorus: Global food security and food for thought. Glob Environ Change. 2009;19(2):292–305. https://doi.org/10.1016/j.gloenvcha.2008.10.009.

    Article  Google Scholar 

  4. Xue YG, Wu FF, Liu XJ, et al. A review on phosphorus recovery technology and Its application in the sewage sludge recycling. Environ Sci Technol. 2014;37(S2):247–51.

    Google Scholar 

  5. Smil V. Phosphorus in the environment: natural flows and human interferences. Annu Rev Energy Env. 2000;25(1):53–88. https://doi.org/10.1146/annurev.energy.25.1.53.

    Article  Google Scholar 

  6. Franz M. Phosphate fertilizer from sewage sludge ash (SSA). Waste Manage. 2008;28(10):1809–18. https://doi.org/10.1016/j.wasman.2007.08.011.

    Article  CAS  Google Scholar 

  7. Cornel P, Schaum C. Phosphorus recovery from wastewater: needs, technologies and costs. Water Sci Technol. 2009;59(6):1069–76. https://doi.org/10.2166/wst.2009.045.

    Article  CAS  Google Scholar 

  8. Lim BH, Kim D-J. Selective acidic elution of Ca from sewage sludge ash for phosphorus recovery under pH control. J Ind Eng Chem. 2017;46:62–7. https://doi.org/10.1016/j.jiec.2016.10.016.

    Article  CAS  Google Scholar 

  9. Herzel H, Kruger O, Hermann L, et al. Sewage sludge ash–A promising secondary phosphorus source for fertilizer production. Sci Total Environ. 2016;542(Pt B):1136–43. https://doi.org/10.1016/j.scitotenv.2015.08.059.

    Article  CAS  Google Scholar 

  10. Chen T, Yan B. Fixation and partitioning of heavy metals in slag after incineration of sewage sludge. Waste Manage. 2012;32(5):957–64. https://doi.org/10.1016/j.wasman.2011.12.003.

    Article  CAS  Google Scholar 

  11. Medici F, Piga L, Rinaldi G. Behaviour of polyaminophenolic additives in the granulation of lime and fly-ash. Waste Manage. 2000;20(7):491–8. https://doi.org/10.1016/S0956-053X(00)00030-1.

    Article  CAS  Google Scholar 

  12. Pettersson A, Åmand L-E, Steenari B-M. Leaching of ashes from co-combustion of sewage sludge and wood—Part I: Recovery of phosphorus. Biomass Bioenerg. 2008;32(3):224–35. https://doi.org/10.1016/j.biombioe.2007.09.016.

    Article  CAS  Google Scholar 

  13. Adam C, Peplinski B, Michaelis M, et al. Thermochemical treatment of sewage sludge ashes for phosphorus recovery. Waste Manage. 2009;29(3):1122–8. https://doi.org/10.1016/j.wasman.2008.09.011.

    Article  CAS  Google Scholar 

  14. Lee M, Kim D-J. Identification of phosphorus forms in sewage sludge ash during acid pre-treatment for phosphorus recovery by chemical fractionation and spectroscopy. J Ind Eng Chem. 2017;51:64–70. https://doi.org/10.1016/j.jiec.2017.02.013.

    Article  CAS  Google Scholar 

  15. Fang L, Li JS, Guo MZ, et al. Phosphorus recovery and leaching of trace elements from incinerated sewage sludge ash (ISSA). Chemosphere. 2018;193:278–87. https://doi.org/10.1016/j.chemosphere.2017.11.023.

    Article  CAS  Google Scholar 

  16. Kalmykova Y, Karlfeldt FK. Phosphorus recovery from municipal solid waste incineration fly ash. Waste Manage. 2013;33(6):1403–10. https://doi.org/10.1016/j.wasman.2013.01.040.

    Article  CAS  Google Scholar 

  17. Li J-S, Chen Z, Wang Q-M, et al. Change in re-use value of incinerated sewage sludge ash due to chemical extraction of phosphorus. Waste Manage. 2018;74:404–12. https://doi.org/10.1016/j.wasman.2018.01.007.

    Article  CAS  Google Scholar 

  18. Biswas BK, Inoue K, Harada H, et al. Leaching of phosphorus from incinerated sewage sludge ash by means of acid extraction followed by adsorption on orange waste gel. J Environ Sci. 2009;21(12):1753–60. https://doi.org/10.1016/S1001-0742(08)62484-5.

    Article  CAS  Google Scholar 

  19. Ottosen LM, Kirkelund GM, Jensen PE. Extracting phosphorous from incinerated sewage sludge ash rich in iron or aluminum. Chemosphere. 2013;91(7):963–9. https://doi.org/10.1016/j.chemosphere.2013.01.101.

    Article  CAS  Google Scholar 

  20. Falayi T. Alkaline recovery of phosphorous from sewage sludge and stabilisation of sewage sludge residue. Waste Manage. 2019;84:166–72. https://doi.org/10.1016/j.wasman.2018.11.041.

    Article  CAS  Google Scholar 

  21. Meng X, Liu X, Huang Q, et al. Recovery of phosphate as struvite from low-temperature combustion sewage sludge ash (LTCA) by cation exchange. Waste Manage. 2019;90:84–93. https://doi.org/10.1016/j.wasman.2019.04.045.

    Article  CAS  Google Scholar 

  22. Wang Q, Li J-S, Tang P, et al. Sustainable reclamation of phosphorus from incinerated sewage sludge ash as value-added struvite by chemical extraction, purification and crystallization. J Clean Prod. 2018;181:717–25. https://doi.org/10.1016/j.jclepro.2018.01.254.

    Article  CAS  Google Scholar 

  23. Xu H, He P, Gu W, et al. Recovery of phosphorus as struvite from sewage sludge ash. J Environ Sci. 2012;24(8):1533–8. https://doi.org/10.1016/S1001-0742(11)60969-8.

    Article  CAS  Google Scholar 

  24. Donatello S, Tong D, Cheeseman CR. Production of technical grade phosphoric acid from incinerator sewage sludge ash (ISSA). Waste Manage. 2010;30(8–9):1634–42. https://doi.org/10.1016/j.wasman.2010.04.009.

    Article  CAS  Google Scholar 

  25. Li R, Zhang Z, Li Y, et al. Transformation of apatite phosphorus and non-apatite inorganic phosphorus during incineration of sewage sludge. Chemosphere. 2015;141:57–61. https://doi.org/10.1016/j.chemosphere.2015.05.094.

    Article  CAS  Google Scholar 

  26. Shiba NC, Ntuli F. Extraction and precipitation of phosphorus from sewage sludge. Waste Manage. 2017;60:191–200. https://doi.org/10.1016/j.wasman.2016.07.031.

    Article  CAS  Google Scholar 

  27. Yang F, Chen J, Yang M, et al. Phosphorus recovery from sewage sludge via incineration with chlorine-based additives. Waste Manage. 2019;95:644–51. https://doi.org/10.1016/j.wasman.2019.06.029.

    Article  CAS  Google Scholar 

  28. Vogel C, Adam C. Heavy metal removal from sewage sludge ash by thermochemical treatment with gaseous hydrochloric acid. Environ Sci Technol. 2011;45(17):7445–500. https://doi.org/10.1021/es2007319.

    Article  CAS  Google Scholar 

  29. Krüger O, Adam C. Phosphorus in recycling fertilizers - analytical challenges. Environ Res. 2017;155:353–8. https://doi.org/10.1016/j.envres.2017.02.034.

    Article  CAS  Google Scholar 

  30. Winburn R, Grier D, Mccarthy GJ, et al. Rietveld quantitative X-ray diffraction analysis of NIST fly ash standard reference materials. Powder Diffr. 2000;15(3):163–72. https://doi.org/10.1017/S0885715600011015.

    Article  CAS  Google Scholar 

  31. Gualtieri A. Modal analysis of piroclastic rocks by combined rietveld and RIR methods. Powder Diffr. 1996;11(2):97–106. https://doi.org/10.1017/S0885715600009052.

    Article  CAS  Google Scholar 

  32. (Mep) MOEP. Solid waste-determination of 22 metal elements—inductively couples plasma optical emission spectrometry. Beijing: China Environmental Science Press; 2016.

  33. Gualtieri ML, Prudenziati M, Gualtieri AF. Quantitative determination of the amorphous phase in plasma sprayed alumina coatings using the Rietveld method. Surf Coat Technol. 2006;201(6):2984–9. https://doi.org/10.1016/j.surfcoat.2006.06.009.

    Article  CAS  Google Scholar 

  34. Kim W, Zhang Q, Saito F. Mechanochemical synthesis of hydroxyapatite from Ca(OH)2–P2O5 and CaO-Ca(OH)2–P2O5 mixtures. J Mater Sci. 2000;35(21):5401–5. https://doi.org/10.1023/a:1004859231795.

    Article  CAS  Google Scholar 

  35. Hoffmann G, Schingnitz D, Bilitewski B. Comparing different methods of analysing sewage sludge, dewatered sewage sludge and sewage sludge ash. Desalination. 2010;250(1):399–403. https://doi.org/10.1016/j.desal.2009.09.064.

    Article  CAS  Google Scholar 

  36. Budhathoki R, Väisänen A, Lahtinen M. Selective recovery of phosphorus as AlPO4 from silicon-free CFB-derived fly ash leachate. Hydrometallurgy. 2018;178:30–6. https://doi.org/10.1016/j.hydromet.2018.03.025.

    Article  CAS  Google Scholar 

  37. Li X, Xing P, Du X, et al. Influencing factors and kinetics analysis on the leaching of iron from boron carbide waste-scrap with ultrasound-assisted method. Ultrason Sonochem. 2017;38:84–91. https://doi.org/10.1016/j.ultsonch.2017.02.037.

    Article  CAS  Google Scholar 

  38. Maccarthy J, Nosrati A, Skinner W, et al. Acid leaching and rheological behaviour of a siliceous goethitic nickel laterite ore: Influence of particle size and temperature. Miner Eng. 2015;77:52–63. https://doi.org/10.1016/j.mineng.2014.12.031.

    Article  CAS  Google Scholar 

  39. Hosseini SA, Raygan S, Rezaei A, et al. Leaching of nickel from a secondary source by sulfuric acid. J Environ Chem Eng. 2017;5(4):3922–9. https://doi.org/10.1016/j.jece.2017.07.059.

    Article  CAS  Google Scholar 

  40. Fang L, Li J-S, Donatello S, et al. Recovery of phosphorus from incinerated sewage sludge ash by combined two-step extraction and selective precipitation. Chem Eng J. 2018;348:74–83. https://doi.org/10.1016/j.cej.2018.04.201.

    Article  CAS  Google Scholar 

  41. Liu DJ, Zhong BH, Zhang YX. Liquid and solid phase reaction kinetics of phosphoric acid complex system (II) experimental study on digestion kinetics of phosphate ore particle system. CIESC J. 2001;01:28–34.

    Google Scholar 

  42. Papamichael EM, Economou ED, Vaimakis TC. Dissolution of the carbonate minerals of phosphate ores: catalysis by carbonic anhydrase II, from bovine erythrocytes, in acid solutions. J Colloid Interface Sci. 2002;251(1):143–50. https://doi.org/10.1006/jcis.2002.8366.

    Article  CAS  Google Scholar 

  43. Economou ED, Vaimakis TC, Papamichael EM. The kinetics of dissolution of the carbonate minerals of phosphate ores using dilute acetic acid solutions: the case of pH range from 3.96 to 6.40. J Colloid Interface Sci. 2002;245(1):133–41. https://doi.org/10.1006/jcis.2001.7931.

    Article  CAS  Google Scholar 

  44. Li M, Wei C, Qiu S, et al. Kinetics of vanadium dissolution from black shale in pressure acid leaching. Hydrometallurgy. 2010;104(2):193–200. https://doi.org/10.1016/j.hydromet.2010.06.001.

    Article  CAS  Google Scholar 

  45. Dickinson CF, Heal GR. Solid-liquid diffusion controlled rate equations. Thermochim Acta. 1999;340–341:89–103. https://doi.org/10.1016/S0040-6031(99)00256-7.

    Article  Google Scholar 

  46. Tanada S, Kabayama M, Kawasaki N, et al. Removal of phosphate by aluminum oxide hydroxide. J Colloid Interface Sci. 2003;257(1):135–40. https://doi.org/10.1016/S0021-9797(02)00008-5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Major Science and Technology Program for Water Pollution Control and Treatment (2017ZX07202005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, P., Zhang, X., Lü, F. et al. Leaching behavior of phosphorous compounds from sewage sludge ash based on quantitative X-ray diffraction analysis. Waste Dispos. Sustain. Energy 2, 113–125 (2020). https://doi.org/10.1007/s42768-020-00037-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42768-020-00037-w

Keywords

Navigation