1932

Abstract

At the intersection of spectroscopy and microscopy lie techniques that are capable of providing subnanometer imaging of excited states of individual molecules or nanoparticles. Such approaches are particularly important for imaging macromolecules or nanoparticles large enough to have a high probability of containing a defect. These inevitable defects often control properties and function despite an otherwise ideal structure. We discuss real-space imaging techniques such as using scanning tunneling microscopy tips to enhance optical measurements and electron energy-loss spectroscopy in a scanning transmission electron microscope, which is based on focused electron beams to obtain high-resolution spatial information on excited states. The outlook for these methods is bright, as they will provide critical information for the characterization and improvement of energy-switching, electron-switching, and energy-harvesting materials.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-071119-040108
2020-04-20
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/physchem/71/1/annurev-physchem-071119-040108.html?itemId=/content/journals/10.1146/annurev-physchem-071119-040108&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Schatz GC, Ratner MA. 2012. Quantum Mechanics in Chemistry Mineola, NY: Dover:
  2. 2. 
    Strickler B, Gruebele M. 2004. Vibrational dynamics of SCCl2 from the zero point to the first dissociation limit. Phys. Chem. Chem. Phys. 6:3786–800
    [Google Scholar]
  3. 3. 
    Bouadloun F, Donner D, Kurland CG 1983. Codon-specific missense errors in vivo. EMBO J 2:1351–56
    [Google Scholar]
  4. 4. 
    Marre S, Park J, Rempel J, Guan J, Bawendi MG, Jensen KF 2008. Supercritical continuous‐microflow synthesis of narrow size distribution quantum dots. Adv. Mater. 20:4830–34
    [Google Scholar]
  5. 5. 
    Zhang Z, Sheng S, Wang R, Sun M 2016. Tip-enhanced Raman spectroscopy. Anal. Chem. 88:9328–46
    [Google Scholar]
  6. 6. 
    Pozzi EA, Goubert G, Chiang N, Jiang N, Chapman CT et al. 2017. Ultrahigh-vacuum tip-enhanced Raman spectroscopy. Chem. Rev. 117:4961–82
    [Google Scholar]
  7. 7. 
    Han Z, Wei X, Xu C, Chiang C, Zhang Y et al. 2016. Imaging van der Waals interactions. J. Phys. Chem. Lett. 7:5205–11
    [Google Scholar]
  8. 8. 
    Orrit M, Bernard J. 1990. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett. 65:2716–19
    [Google Scholar]
  9. 9. 
    Moerner WE, Kador L. 1989. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62:2535–38
    [Google Scholar]
  10. 10. 
    Sun M, Zhang Z, Chen L, Li Q, Sheng S et al. 2014. Plasmon-driven selective reductions revealed by tip-enhanced Raman spectroscopy. Adv. Mater. Interfaces 1:1300125
    [Google Scholar]
  11. 11. 
    Roelli P, Galland C, Piro N, Kippenberg TJ 2016. Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering. Nat. Nanotechnol. 11:164–69
    [Google Scholar]
  12. 12. 
    Pettinger B, Ren B, Picardi G, Schuster R, Ertl G 2005. Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields. J. Raman Spectrosc. 36:541–50
    [Google Scholar]
  13. 13. 
    Richard-Lacroix M, Zhang Y, Dong Z, Deckert V 2017. Mastering high resolution tip-enhanced Raman spectroscopy: towards a shift of perception. Chem. Soc. Rev. 46:3922–44
    [Google Scholar]
  14. 14. 
    Becker SF, Esmann M, Yoo K, Gross P, Vogelgesang R et al. 2016. Gap-plasmon-enhanced nanofocusing near-field microscopy. ACS Photonics 3:223–32
    [Google Scholar]
  15. 15. 
    Jeong JS, Odlyzko ML, Xu P, Jalan B, Mkhoyan KA 2016. Probing core-electron orbitals by scanning transmission electron microscopy and measuring the delocalization of core-level excitations. Phys. Rev. B 93:165140
    [Google Scholar]
  16. 16. 
    Miao J, Ercius P, Billinge SJL 2016. Atomic electron tomography: 3D structures without crystals. Science 353:aaf2157
    [Google Scholar]
  17. 17. 
    Lučić V, Rigort A, Baumeister W 2013. Cryo-electron tomography: the challenge of doing structural biology in situ. J. Cell Biol. 202:407–19
    [Google Scholar]
  18. 18. 
    Mahamid J, Pfeffer S, Schaffer M, Villa E, Danev R et al. 2016. Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 351:969–72
    [Google Scholar]
  19. 19. 
    Kuhnke K, Große C, Merino P, Kern K 2017. Atomic-scale imaging and spectroscopy of electroluminescence at molecular interfaces. Chem. Rev. 117:5174–222
    [Google Scholar]
  20. 20. 
    Zhang R, Zhang Y, Dong ZC, Jiang S, Zhang C et al. 2013. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498:82–86
    [Google Scholar]
  21. 21. 
    Lee J, Crampton KT, Tallarida N, Apkarian VA 2019. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature 568:78–82
    [Google Scholar]
  22. 22. 
    Zhang Y, Luo Y, Zhang Y, Yu Y-J, Kuang Y-M et al. 2016. Visualizing coherent intermolecular dipole–dipole coupling in real space. Nature 531:623–27
    [Google Scholar]
  23. 23. 
    Zhou W, Pennycook SJ, Idrobo J-C 2012. Localization of inelastic electron scattering in the low-loss energy regime. Ultramicroscopy 119:51–56
    [Google Scholar]
  24. 24. 
    Ballard JB, Carmichael ES, Lyding JW, Gruebele M, Shi D et al. 2006. Laser absorption scanning tunneling microscopy of carbon nanotubes. Nano Lett 6:45–49
    [Google Scholar]
  25. 25. 
    Nguyen D, Goings JJ, Nguyen HA, Lyding J, Li X, Gruebele M 2018. Orientation-dependent imaging of electronically excited quantum dots. J. Chem. Phys. 148:064701
    [Google Scholar]
  26. 26. 
    Nienhaus L, Goings JJ, Nguyen D, Wieghold S, Lyding JW et al. 2015. Imaging excited orbitals of quantum dots: experiment and electronic structure theory. J. Am. Chem. Soc. 137:14743–50
    [Google Scholar]
  27. 27. 
    Binnig G, Rohrer H, Gerber C, Weibel E 1982. Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 40:178–80
    [Google Scholar]
  28. 28. 
    Tersoff J, Hamann DR. 1985. Theory of the scanning tunneling microscope. Phys. Rev. B 31:805–13
    [Google Scholar]
  29. 29. 
    Grafström S. 2002. Photoassisted scanning tunneling microscopy. J. Appl. Phys. 91:1717–53
    [Google Scholar]
  30. 30. 
    Grafström S, Schuller P, Kowalski J, Neumann R 1998. Thermal expansion of scanning tunneling microscopy tips under laser illumination. J. Appl. Phys. 83:3453–60
    [Google Scholar]
  31. 31. 
    Carmichael ES, Ballard JB, Lyding JW, Gruebele M 2007. Frequency-modulated, single-molecule absorption detected by scanning tunneling microscopy. J. Phys. Chem. C 111:3314–21
    [Google Scholar]
  32. 32. 
    Zhang C, Chen L, Zhang R, Dong Z 2015. Scanning tunneling microscope based nanoscale optical imaging of molecules on surfaces. Jpn. J. Appl. Phys. 54:08LA01
    [Google Scholar]
  33. 33. 
    Ho W. 2002. Single-molecule chemistry. J. Chem. Phys. 117:11033–61
    [Google Scholar]
  34. 34. 
    van de Walle GFA, van Kempen H, Wyder P, Davidsson P 1987. Scanning tunneling microscopy on photoconductive semi‐insulating GaAs. Appl. Phys. Lett. 50:22–24
    [Google Scholar]
  35. 35. 
    Scott G, Ashtekar S, Lyding J, Gruebele M 2010. Direct imaging of room temperature optical absorption with subnanometer spatial resolution. Nano Lett 10:4897–900
    [Google Scholar]
  36. 36. 
    Lyding JW, Skala S, Hubacek JS, Brockenbrough R, Gammie G 1988. Variable‐temperature scanning tunneling microscope. Rev. Sci. Instrum. 59:1897–902
    [Google Scholar]
  37. 37. 
    Nienhaus L, Wieghold S, Nguyen D, Lyding JW, Scott GE, Gruebele M 2015. Optoelectronic switching of a carbon nanotube chiral junction imaged with nanometer spatial resolution. ACS Nano 9:10563–70
    [Google Scholar]
  38. 38. 
    Nguyen D, Nguyen HA, Lyding JW, Gruebele M 2017. Imaging and manipulating energy transfer among quantum dots at individual dot resolution. ACS Nano 11:6328–35
    [Google Scholar]
  39. 39. 
    Nguyen HA, Banerjee P, Nguyen D, Lyding JW, Gruebele M, Jain PK 2018. STM imaging of localized surface plasmons on individual gold nanoislands. J. Phys. Chem. Lett. 9:1970–76
    [Google Scholar]
  40. 40. 
    Nguyen D, Wallum A, Nguyen HA, Nguyen NT, Lyding JW, Gruebele M 2019. Imaging of carbon nanotube electronic states polarized by the field of an excited quantum dot. ACS Nano 13:1012–18
    [Google Scholar]
  41. 41. 
    Stiles PL, Dieringer JA, Shah NC, Van Duyne RP 2008. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1:601–26
    [Google Scholar]
  42. 42. 
    Benz F, Schmidt MK, Dreismann A, Chikkaraddy R, Zhang Y et al. 2016. Single-molecule optomechanics in “picocavities. .” Science 354:726–29
    [Google Scholar]
  43. 43. 
    Zhu W, Esteban R, Borisov AG, Baumberg JJ, Nordlander P et al. 2016. Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat. Commun. 7:11495
    [Google Scholar]
  44. 44. 
    Xie Z, Duan S, Tian G, Wang C-K, Luo Y 2018. Theoretical modeling of tip-enhanced resonance Raman images of switchable azobenzene molecules on Au(111). Nanoscale 10:11850–60
    [Google Scholar]
  45. 45. 
    Barbry M, Koval P, Marchesin F, Esteban R, Borisov AG et al. 2015. Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics. Nano Lett 15:3410–19
    [Google Scholar]
  46. 46. 
    Imada H, Miwa K, Imai-Imada M, Kawahara S, Kimura K, Kim Y 2016. Real-space investigation of energy transfer in heterogeneous molecular dimers. Nature 538:364–67
    [Google Scholar]
  47. 47. 
    Stavale F, Nilius N, Freund H-J 2013. STM luminescence spectroscopy of intrinsic defects in ZnO(000) thin films. J. Phys. Chem. Lett. 4:3972–76
    [Google Scholar]
  48. 48. 
    Doppagne B, Chong MC, Lorchat E, Berciaud S, Romeo M et al. 2017. Vibronic spectroscopy with submolecular resolution from STM-induced electroluminescence. Phys. Rev. Lett. 118:127401
    [Google Scholar]
  49. 49. 
    Doppagne B, Chong MC, Bulou H, Boeglin A, Scheurer F, Schull G 2018. Electrofluorochromism at the single-molecule level. Science 361:251–55
    [Google Scholar]
  50. 50. 
    Qiu XH, Nazin GV, Ho W 2003. Vibrationally resolved fluorescence excited with submolecular precision. Science 299:542–46
    [Google Scholar]
  51. 51. 
    Rossel F, Pivetta M, Schneider WD 2010. Luminescence experiments on supported molecules with the scanning tunneling microscope. Surf. Sci. Rep. 65:129–44
    [Google Scholar]
  52. 52. 
    Lambe J, Jaklevic RC. 1968. Molecular vibration spectra by inelastic electron tunneling. Phys. Rev. 165:821–32
    [Google Scholar]
  53. 53. 
    Chen G, Luo Y, Gao H, Jiang J, Yu Y et al. 2019. Spin-triplet-mediated up-conversion and crossover behavior in single-molecule electroluminescence. Phys. Rev. Lett. 122:177401
    [Google Scholar]
  54. 54. 
    Zhang Y, Meng Q-S, Zhang L, Luo Y, Yu Y-J et al. 2017. Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity. Nat. Commun. 8:15225
    [Google Scholar]
  55. 55. 
    Stipe BC, Rezaei MA, Ho W 1998. Single-molecule vibrational spectroscopy and microscopy. Science 280:1732–35
    [Google Scholar]
  56. 56. 
    Dexter DL. 1953. A theory of sensitized luminescence in solids. J. Chem. Phys. 21:836–50
    [Google Scholar]
  57. 57. 
    Große C, Merino P, Rosławska A, Gunnarsson O, Kuhnke K, Kern K 2017. Submolecular electroluminescence mapping of organic semiconductors. ACS Nano 11:1230–37
    [Google Scholar]
  58. 58. 
    Zhang Y, Geng F, Gao HY, Liao Y, Dong ZC, Hou JG 2010. Enhancement and suppression effect of molecules on nanocavity plasmon emissions excited by tunneling electrons. Appl. Phys. Lett. 97:243101
    [Google Scholar]
  59. 59. 
    Yu A, Li S, Dhital B, Lu HP, Ho W 2016. Tunneling electron induced charging and light emission of single Panhematin molecules. J. Phys. Chem. C 120:21099–103
    [Google Scholar]
  60. 60. 
    Lutz T, Kabakchiev A, Dufaux T, Wolpert C, Wang Z et al. 2011. Scanning tunneling luminescence of individual CdSe nanowires. Small 7:2396–400
    [Google Scholar]
  61. 61. 
    Shi X, Coca-López N, Janik J, Hartschuh A 2017. Advances in tip-enhanced near-field Raman microscopy using nanoantennas. Chem. Rev. 117:4945–60
    [Google Scholar]
  62. 62. 
    Yu A, Li S, Czap G, Ho W 2016. Tunneling-electron-induced light emission from single gold nanoclusters. Nano Lett 16:5433–36
    [Google Scholar]
  63. 63. 
    Kociak M, Stéphan O. 2014. Mapping plasmons at the nanometer scale in an electron microscope. Chem. Soc. Rev. 43:3865–83
    [Google Scholar]
  64. 64. 
    Wu H, Zhao X, Song D, Tian F, Wang J et al. 2018. Progress and prospects of aberration-corrected STEM for functional materials. Ultramicroscopy 194:182–92
    [Google Scholar]
  65. 65. 
    Jeanguillaume C, Colliex C. 1989. Spectrum-image: the next step in EELS digital acquisition and processing. Ultramicroscopy 28:252–57
    [Google Scholar]
  66. 66. 
    Adamson‐Sharpe KM, Ottensmeyer FP. 1981. Spatial resolution and detection sensitivity in microanalysis by electron energy loss selected imaging. J. Microsc. 122:309–14
    [Google Scholar]
  67. 67. 
    Zagonel LF, Mazzucco S, Tencé M, March K, Bernard R et al. 2011. Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved structure. Nano Lett 11:568–73
    [Google Scholar]
  68. 68. 
    Schefold J, Meuret S, Schilder N, Coenen T, Agrawal H et al. 2019. Spatial resolution of coherent cathodoluminescence super-resolution microscopy. ACS Photonics 6:1067–72
    [Google Scholar]
  69. 69. 
    Colliex C, Kociak M, Stéphan O 2016. Electron energy loss spectroscopy imaging of surface plasmons at the nanometer scale. Ultramicroscopy 162:A1–24
    [Google Scholar]
  70. 70. 
    Hofer F, Schmidt FP, Grogger W, Kothleitner G 2016. Fundamentals of electron energy-loss spectroscopy. IOP Conf. Ser. Mater. Sci. Eng. 109:012007
    [Google Scholar]
  71. 71. 
    Venables J. 1987. Electron energy-loss spectroscopy in the electron microscope. J. Mod. Opt. 34:582
    [Google Scholar]
  72. 72. 
    Gloter A, Badjeck V, Bocher L, Brun N, March K et al. 2017. Atomically resolved mapping of EELS fine structures. Mater. Sci. Semicond. Process. 65:2–17
    [Google Scholar]
  73. 73. 
    Zhou W, Lee J, Nanda J, Pantelides ST, Pennycook SJ, Idrobo J-C 2012. Atomically localized plasmon enhancement in monolayer graphene. Nat. Nanotechnol. 7:161–65
    [Google Scholar]
  74. 74. 
    Zhou W, Pennycook SJ, Idrobo J-C 2012. Probing the electronic structure and optical response of a graphene quantum disk supported on monolayer graphene. J. Phys. Condens. Matter 24:314213
    [Google Scholar]
  75. 75. 
    Hage FS, Kapetanakis MD, Idrobo J-C, Ramasse QM, Kepaptsoglou D 2019. Atomic‐scale spectroscopic imaging of the extreme‐UV optical response of B‐ and N‐doped graphene. Adv. Funct. Mater. 29:1901819
    [Google Scholar]
  76. 76. 
    Hage FS, Hardcastle TP, Gjerding MN, Kepaptsoglou DM, Seabourne CR et al. 2018. Local plasmon engineering in doped graphene. ACS Nano 12:1837–48
    [Google Scholar]
  77. 77. 
    Kapetanakis MD, Zhou W, Oxley MP, Lee J, Prange MP et al. 2015. Low-loss electron energy loss spectroscopy: an atomic-resolution complement to optical spectroscopies and application to graphene. Phys. Rev. B 92:125147
    [Google Scholar]
  78. 78. 
    Zachman MJ, Hachtel JA, Idrobo J-C, Chi M 2020. Emerging electron microscopy techniques for probing functional interfaces in energy materials. Angew. Chem. 59:1384–96
    [Google Scholar]
  79. 79. 
    Lagos MJ, Trügler A, Hohenester U, Batson PE 2017. Mapping vibrational surface and bulk modes in a single nanocube. Nature 543:529–32
    [Google Scholar]
  80. 80. 
    Baden AD, Cox PA, Egdell RG, Orchard AF, Willmer RJD 1981. Observation of surface optical phonons on SrTiO3(100). J. Phys. C Solid State Phys. 14:L1081–84
    [Google Scholar]
  81. 81. 
    Choudhury N, Walter EJ, Kolesnikov AI, Loong C-K 2008. Large phonon band gap in SrTiO3 and the vibrational signatures of ferroelectricity in ATiO3 perovskites: first-principles lattice dynamics and inelastic neutron scattering. Phys. Rev. B 77:134111
    [Google Scholar]
  82. 82. 
    Egoavil R, Gauquelin N, Martinez GT, Van Aert S, Van Tendeloo G, Verbeeck J 2014. Atomic resolution mapping of phonon excitations in STEM-EELS experiments. Ultramicroscopy 147:1–7
    [Google Scholar]
  83. 83. 
    Hage FS, Kepaptsoglou DM, Ramasse QM, Allen LJ 2019. Phonon spectroscopy at atomic resolution. Phys. Rev. Lett. 122:016103
    [Google Scholar]
  84. 84. 
    Kettle SFA. 1990. Raman spectroscopy. Perspectives in Modern Chemical Spectroscopy DL Andrews 225–42 Berlin/Heidelberg: Springer
    [Google Scholar]
  85. 85. 
    Duan S, Tian G, Ji Y, Shao J, Dong Z, Luo Y 2015. Theoretical modeling of plasmon-enhanced Raman images of a single molecule with subnanometer resolution. J. Am. Chem. Soc. 137:9515–18
    [Google Scholar]
  86. 86. 
    Nguyen D, Kang G, Chiang N, Chen X, Seideman T et al. 2018. Probing molecular-scale catalytic interactions between oxygen and cobalt phthalocyanine using tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 140:5948–54
    [Google Scholar]
  87. 87. 
    Schmucker SW, Kumar N, Abelson JR, Daly SR, Girolami GS et al. 2012. Field-directed sputter sharpening for tailored probe materials and atomic-scale lithography. Nat. Commun. 3:935
    [Google Scholar]
  88. 88. 
    Cocker TL, Jelic V, Gupta M, Molesky SJ, Burgess JAJ et al. 2013. An ultrafast terahertz scanning tunnelling microscope. Nat. Photonics 7:620–25
    [Google Scholar]
  89. 89. 
    Jelic V, Iwaszczuk K, Nguyen PH, Rathje C, Hornig GJ et al. 2017. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface. Nat. Phys. 13:591–98
    [Google Scholar]
  90. 90. 
    Cocker TL, Peller D, Yu P, Repp J, Huber R 2016. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature 539:263–67
    [Google Scholar]
  91. 91. 
    Terada Y, Yoshida S, Takeuchi O, Shigekawa H 2010. Laser-combined scanning tunnelling microscopy for probing ultrafast transient dynamics. J. Phys. Condens. Matter 22:264008
    [Google Scholar]
  92. 92. 
    Takeuchi O, Aoyama M, Shigekawa H 2005. Analysis of time-resolved tunnel current signal in sub-picosecond range observed by shaken-pulse-pair-excited scanning tunneling miscroscopy. Jpn. J. Appl. Phys. 44:5354–57
    [Google Scholar]
  93. 93. 
    Wang S, Wattanatorn N, Chiang N, Zhao Y, Kim M et al. 2019. Photoinduced charge transfer in single-molecule p-n junctions. J. Phys. Chem. Lett. 10:2175–81
    [Google Scholar]
  94. 94. 
    Hassan MT, Baskin JS, Liao B, Zewail AH 2017. High-temporal-resolution electron microscopy for imaging ultrafast electron dynamics. Nat. Photonics 11:425–30
    [Google Scholar]
  95. 95. 
    Najafi E, Ivanov V, Zewail A, Bernardi M 2017. Super-diffusion of excited carriers in semiconductors. Nat. Commun. 8:15177
    [Google Scholar]
  96. 96. 
    Liao B, Najafi E, Li H, Minnich AJ, Zewail AH 2017. Photo-excited hot carrier dynamics in hydrogenated amorphous silicon imaged by 4D electron microscopy. Nat. Nanotechnol. 12:871–76
    [Google Scholar]
  97. 97. 
    Zewail AH. 2010. Four-dimensional electron microscopy. Science 328:187–93
    [Google Scholar]
  98. 98. 
    Ortalan V, Zewail AH. 2011. 4D scanning transmission ultrafast electron microscopy: single-particle imaging and spectroscopy. J. Am. Chem. Soc. 133:10732–35
    [Google Scholar]
  99. 99. 
    Yurtsever A, Zewail AH. 2009. 4D nanoscale diffraction observed by convergent-beam ultrafast electron microscopy. Science 326:708–12
    [Google Scholar]
  100. 100. 
    Imura K, Nagahara T, Okamoto H 2004. Imaging of surface plasmon and ultrafast dynamics in gold nanorods by near-field microscopy. J. Phys. Chem. B 108:16344–47
    [Google Scholar]
  101. 101. 
    Yildiz A, Selvin PR. 2005. Fluorescence imaging with one nanometer accuracy: application to molecular motors. Acc. Chem. Res. 38:574–82
    [Google Scholar]
  102. 102. 
    Churchman LS, Spudich JA. 2012. Colocalization of fluorescent probes: accurate and precise registration with nanometer resolution. Cold Spring Harb. Protoc. 2012:141–49
    [Google Scholar]
  103. 103. 
    Gao L, Zhao H, Li T, Huo P, Chen D, Liu B 2018. Atomic force microscopy based tip-enhanced Raman spectroscopy in biology. Int. J. Mol. Sci. 19:1193
    [Google Scholar]
  104. 104. 
    Vicidomini G, Bianchini P, Diaspro A 2018. STED super-resolved microscopy. Nat. Methods 15:173–82
    [Google Scholar]
  105. 105. 
    Nowak D, Morrison W, Wickramasinghe HK, Jahng J, Potma E et al. 2016. Nanoscale chemical imaging by photoinduced force microscopy. Sci. Adv. 2:e1501571
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-071119-040108
Loading
/content/journals/10.1146/annurev-physchem-071119-040108
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error