Skip to main content
Log in

Sodium hydroxide or urea pretreatment of acerola (Malpighia emarginata) fruit residue increases dry matter degradability and reduces methane production in in vitro rumen fermentation

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the effect of adding different concentrations of either urea or NaOH in dehydrated acerola (Malpighia emarginata) fruit residue (DAFR) on chemical composition, in vitro rumen degradability, and gas and methane production. A completely randomized design was used with the following seven treatments: control, without chemical treatment, or pretreatment of DAFR with urea or NaOH at 20, 40, or 60 g/kg dry matter (DM). DM degradability and gas and methane production of DAFR were evaluated by semi-automated in vitro gas production technique. DAFR treated with urea or NaOH at concentrations of 40 and 60 g/kg DM decreased its neutral detergent fiber (P = 0.0115) and lignin (P < 0.0001) content, and this reduction was greater with the highest concentration (60 g/kg DM). In all tested concentrations, urea and NAOH were effective to increase the DM effective degradability of DAFR compared with the control treatment, although treatments with a concentration of 60 g/kg DM presented the highest values (P < 0.0001). Treatment of DAFR with NaOH or urea at 60 g/kg DM promotes greater lignin solubilization and DM degradability and lower gas and methane production in in vitro rumen fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almeida, G.A.P., Ferreira, M.A., Silva, J.L., Chagas, J.C.C., Véras, A.S.C., Barros, L.J. A. and Almeida, G.L.P., 2018. Sugarcane bagasse as exclusive roughage for dairy cows in smallholder livestock system. Asian-Australasian Journal of Animal Science, 31, 379-385

    Article  Google Scholar 

  • AOAC, 1990. Official methods of analysis, fifteenth ed., (Association of Official Analytical Chemist, Washington)

    Google Scholar 

  • Cabral, I.S., Azevêdo, J.A.G., Almeida, F.M., Pereira, L.G., Araújo, G.G., Nogueira, A.S., Souza, L.L., Oliveira, G.A. and Oliveira Filho, C.A., 2015. Silage or fresh by-product of peach palm as roughage in the feeding of lambs. Tropical Animal Health and Production, 47, 525-531.

    Article  Google Scholar 

  • Cândido, M.J.D., Neiva, J.N.M., Pimentel, J.C.M., Vasconcelos, V.R., Sampaio, E.M. and Mendes Neto, J., 1999. Avaliação do valor nutritivo do bagaço de cana-de-açúcar amonizado com uréia. Revista Brasileira de Zootecnia, 28, 928-935.

    Article  Google Scholar 

  • Caro, D., Kebreab, E. and Mitloehner, F.M., 2016. Mitigation of enteric methane emissions from global livestock systems through nutrition strategies. Climatic Change, 37, 467-480.

    Article  Google Scholar 

  • Chen, Y., Cheng, J.J. and Creamer, K.S., 2008. Inhibition of anaerobic digestion process: a review. Bioresource Technology, 99, 4044-4064.

    Article  CAS  Google Scholar 

  • Cunha, A.P.M., Alvalá, C.A., Nobre, R.C. and Carvalho, M.A., 2015. Monitoring vegetative drought dynamics in the Brazilian semiarid region. Agricultural and Forest Meteorology, 214-215, 494-505.

    Article  Google Scholar 

  • Dhanoa, M.S., France, J., Siddons, R.C., Lopez, S. and Buchanan-Smith, J.G., 1995. A non-linear compartimental model to describe forage degradation kinetics during incubation in polyester bags in the rumen. The British Journal of Nutrition, 73, 3-15.

    Article  CAS  Google Scholar 

  • Eiras, C.E., Mottin, C., Passetti, R.A.C., Torrecilhas, J.A., Souza, K.A. and Guerrero, A., 2017. How dietary cottonseed hull affects the performance of young bulls finished in a high-concentrate system. Animal Production Science, 57, 1719-1724.

    Article  Google Scholar 

  • EMBRAPA, 2012. A cultura da acerola. Empresa Brasileira de Pesquisa Agropecuária. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/128278/1/PLANTAR-Acerola-ed03-2012.pdf. Accessed 14 june 2017.

  • Emmanuel, N., Bhagwat, S.R., Pawar, M.M., Chahuan, H.D. and Makwana, R.B., 2013. In vitro gas production technique for evaluation of feed resources. Journal of Animal Feed Science and Technology, 1, 57-140.

    Google Scholar 

  • FAO, 2015. Agricultural Outlook 2015. Brazilian agriculture: Prospects and challenges. Food and Agriculture Organization of the United Nations. http://www.agri-outlook.org. Accessed 07 June 2019.

  • France, J., Dhanoa, M.S., Theodorou, M.K., Lister, S.J., Davies, D.R. and Isac, D., 1993. A model to interpret gas accumulation profiles associated with in vitro degradation of ruminant feeds. Journal of Theoretical Biology, 163, 99-111.

    Article  Google Scholar 

  • Hassan, M., Ding, W., Bi, J., Mehryar, E., Talha, Z.A.A. and Huang, H., 2016. Methane enhancement through oxidative cleavage and alkali solubilization pre-treatments for corn stover with anaerobic activated sludge. Bioresource Technology, 200, 405-412.

    Article  CAS  Google Scholar 

  • Hierholtzer, A. and Akunna, J.C., 2012. Modelling sodium inhibition on the anaerobic digestion process. Water Science and Technology, 66, 1565-1573.

    Article  CAS  Google Scholar 

  • Johansen, D.A., 1940. Plant microtechnique. (McGraw-Hill Book Company, London).

    Google Scholar 

  • Kang, K.E., Jeong, G.T. and Park, D.H., 2012. Pretreatment of rapeseed straw by sodium hydroxide. Bioprocess and Biosystems Engineering, 35, 705-713.

    Article  CAS  Google Scholar 

  • Koyama, M., Watanabe, K., Kurosawa, N., Ishikawa, K., Ban, S. and Toda, T. 2017. Effect of alkaline pretreatment on mesophilic and thermophilic anaerobic digestion of a submerged macrophyte: Inhibition and recovery against dissolved lignin during semi-continuous operation. Bioresource Technology, 238, 666-674.

    Article  CAS  Google Scholar 

  • Krishania, M., Vijay, V.K. and Chandra, R., 2013. Methane fermentation and kinetics of wheat straw pretreated substrates co-digested with cattle manure in batch assay. Energy, 57, 359-367

    Article  CAS  Google Scholar 

  • Loow, Y.L., Wu, T.Y., Jahim, J.M., Mohammad, A.W. and Teoh, W.H., 2016. Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose, 23, 1491-1520.

    Article  CAS  Google Scholar 

  • Malekkhahi, M., Danesh Mesgaran, M. and Tahmasbi, A.M., 2012. The effect of chemical treatment with NaOH and urea on chemical composition, in vitro gas production and in situ dry matter degradability of sesame residues. Livestock Research for Rural Development, 24.

  • Maurício, R.M., Pereira, L.G.R., Gonçalves, L.C., Rodriguez, N.M., Martins, R.G.R. and Rodrigues, J.A.S., 2003. Potencial da técnica in vitro semi-automática de produção de gases para avaliação de silagens de sorgo (Sorghum bicolor (L.) Moench). Revista Brasileira de Zootecnia, 32, 1013-1020.

    Article  Google Scholar 

  • Mazza, P.H.S., Jaeger, S.M.P.L., Silva, F.L., Barbosa, A.M., Nascimento, T.V.C., Hora, D.I.C., da Silva Júnior, J.M., Bezerra, L.R. and Oliveira, R.L., 2020. Effect of dehydrated residue from acerola (Malpighia emarginata DC.) fruit pulp in lamb diet on intake, ingestive behavior, digestibility, ruminal parameters and N balance. Livestock Science, 233, 103938.

    Article  Google Scholar 

  • Meeske, R., Ashbell, G., Weinberg, Z.G. and Kipnis, T., 1993. Ensiling forage sorghum at two stages of maturity with the addition of lactic acid bacterial inoculants. Animal Feed Science and Technology, 43, 165-175.

    Article  CAS  Google Scholar 

  • Menezes, D.R., Costa, R.G., Araújo, G.G.L., Pereira, L.G.R., Nunes, A.C. B., Henrique, L.T. and Rodrigues, R.T.S., 2015. Cinética ruminal de dietas contendo farelo de mamona destoxificado. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 67, 636-641.

    Article  Google Scholar 

  • Ørskov, E.R. and McDonald, I., 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. The Journal of Agricultural Science, 92, 499-503.

    Article  Google Scholar 

  • Patra, A., Park, T., Kim, M. and Yu, Z., 2017. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. Journal of Animal Science and Biotechnology, 8, 13.

    Article  Google Scholar 

  • Pazdiora, R.D., Pazdiora, B.R.C.N., Ferreira, E., Muniz, I.M., Andrade, E.R., Siqueira, J.V.S., Scherer, F., Venturoso, O.J. and Souza, P.J., 2019. Digestibilidade, comportamento ingestivo e desempenho de ovinos alimentados com resíduos de agroindústrias processadoras de frutas. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 71, 2093-2102.

    Article  Google Scholar 

  • Pereira, E.S., Mizubuti, I. Y., Ribeiro, E.L.A, Neiva, J.N.M., Pimentel, P.G., Duarte, L.S., Moreno, G.M.B., Pinto, A.P., Costa, M.R.G. and Rocha Júnior, J.N., 2013. Estimative of the nutritional value of agroindustrial byproducts by using in vitro gas production technique. Semina: Ciências Agrárias, 34, 391-398.

    CAS  Google Scholar 

  • Pires, A.J.V., Reis, R.A., Carvalho, G.G.P., Siqueira, G.R. and Bernardes, T.F., 2006. Bagaço de cana-de-açúcar tratado com hidróxido de sódio. Revista Brasileira de Zootecnia, 35, 953-957.

    Article  Google Scholar 

  • SAS, 2003. User’s guide: version 9.1., SAS Inc, Cary, USA.

    Google Scholar 

  • Shetty, D.J., Kshirsagar, P., Tapadia-Maheshwari, S., Lanjekar, V., Singh, S.K. and Dhakephalkar, P.K., 2017. Alkali pretreatment at ambient temperature: A promising method to enhance biomethanation of rice straw. Bioresource Technology, 226, 80-88.

    Article  CAS  Google Scholar 

  • Shibata, M. and Terada, F., 2010. Factors affecting methane production and mitigation in ruminants. Journal of Animal Science, 81, 2-10.

    Article  CAS  Google Scholar 

  • Silva, R.O., Barioni, L.G., Julian, Hall J.A., Moretti, A.C., Veloso, R.F., Alexander, P., Crespolini, M. and Moran, D., 2017. Sustainable intensification of Brazilian livestock production through optimized pasture restoration. Agricultural Systems, 153, 201-211.

    Article  Google Scholar 

  • Theodorou, M.K., Willians, B.A., Dhanoa, M.S., McAllan, A.B., and France, J., 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology, 48, 85-197.

    Article  Google Scholar 

  • Van Soest, P.V., Robertson, J.B. and Lewis, B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583-3597.

    Article  Google Scholar 

  • Wanapat, M. and Cherdthong, A., 2009. Use of real-time PCR technique in studying rumen cellulolytic bacteria population as affected by level of roughage in swamp buffalo. Current Microbiology, 58, 294-299.

    Article  CAS  Google Scholar 

  • Yanti, Y. and Yayota, M., 2017. Agricultural by-products as feed for ruminants in tropical area: nutritive value and mitigating methane emission. Reviews in Agricultural Science, 5, 65-76.

    Article  Google Scholar 

  • Zhang, X., Wang, M., Wang, R., Ma, Z., Long, D., Mao, H., Wen, J., Bernard, L.A., Beauchemin, K.A. and Tan, Z., 2018. Urea plus nitrate pretreatment of rice and wheat straws enhances degradation and reduces methane production in vitro ruminal culture. Journal of the Science of Food and Agriculture, 98, 5205-5211.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Conselho Nacional de Pesquisa e Desenvolvimento (CNPq, Brazil), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil) and Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE, Brazil) for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lais Micaelle Lopes Moura.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Statement of animal rights

The experimental procedures followed the animal care of the Committee of the UNIVASF (0001/021014).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moura, L.M.L., da Silva Pereira, F.D., de Lima, P.R. et al. Sodium hydroxide or urea pretreatment of acerola (Malpighia emarginata) fruit residue increases dry matter degradability and reduces methane production in in vitro rumen fermentation. Trop Anim Health Prod 52, 2433–2441 (2020). https://doi.org/10.1007/s11250-020-02272-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-020-02272-z

Keywords

Navigation