Skip to main content

Advertisement

Log in

The oligosaccharide portion of ganglioside GM1 regulates mitochondrial function in neuroblastoma cells

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The crucial role of ganglioside GM1 in the regulation of neural homeostasis has been assessed by several studies. Recently we shed new light on the molecular basis underlying GM1 effects demonstrating that GM1 oligosaccharide directly binds TrkA receptor and triggers MAPK pathway activation leading to neuronal differentiation and protection. Following its exogenous administration, proteomic analysis revealed an increased expression of proteins involved in several biochemical mechanisms, including mitochondrial bioenergetics. Based on these data, we investigated the possible effect of GM1 oligosaccharide administration on mitochondrial function. We show that wild-type Neuro2a cells exposed to GM1 oligosaccharide displayed an increased mitochondrial density and an enhanced mitochondrial activity together with reduced reactive oxygen species levels. Interestingly, using a Neuro2a model of mitochondrial dysfunction, we found an increased mitochondrial oxygen consumption rate as well as increased complex I and II activities upon GM1 oligosaccharide administration. Taken together, our data identify GM1 oligosaccharide as a mitochondrial regulator that by acting at the plasma membrane level triggers biochemical signaling pathway inducing mitochondriogenesis and increasing mitochondrial activity. Although further studies are necessary, the capability to enhance the function of impaired mitochondria points to the therapeutic potential of the GM1 oligosaccharide for the treatment of pathologies where these organelles are compromised, including Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

CCCP:

Carbonyl cyanide 3-chlorophenylhydrazone

CTRL:

Control

DMEM:

Dulbecco’s modified Eagles’ medium

ERK1/2:

Extracellular signal-regulated protein kinases 1 and 2

ETC:

Electron transport chain

EtBr:

Ethidium bromide

FBS:

Fetal bovine serum

GM1:

II3Neu5Ac-Gg4Cer, β-Gal-(1–3)-β-GalNAc-(1–4)-[α-Neu5Ac-(2–3)]-β-Gal-(1–4)-β-Glc-Cer

HRP:

Horseradish peroxidase

MAPK:

Mitogen-activated protein kinase

mtDNA:

Mitochondrial DNA

MPP+ :

1-methyl-4-phenylpyridinium

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride

N2a:

Neuro2a cells

NGF:

Nerve growth factor

OligoGM1:

GM1 oligosaccharide, II3Neu5Ac-Gg4, β-Gal-(1–3)-β-GalNAc-(1–4)-[α-Neu5Ac-(2–3)]-β-Gal-(1–4)-Glc

Oxphos:

Oxidative phosphorylation

OCR:

Oxygen Consumption Rate

PBS:

Phosphate-buffered saline

PD:

Parkinson’s disease

PVDF:

Polyvinylidene difluoride

RRID:

Research resource identifiers

ROS:

Reactive oxygen species

TBS-T:

Tris-buffered saline containing 0.1% Tween-20

Trk:

Neurotrophin tyrosin kinase receptor

TEM:

Transmission electron microscopy

WT:

Wild-type

References

  1. Chester, M.A.: IUPAC-IUB joint commission on biochemical nomenclature (JCBN). Nomenclature of glycolipids--recommendations 1997. Eur. J. Biochem. 257, 293–298 (1998)

    CAS  PubMed  Google Scholar 

  2. Sandhoff, R., Schulze, H., Sandhoff, K.: Ganglioside metabolism in health and disease. Prog. Mol. Biol. Transl. Sci. 156, 1–62 (2018)

    PubMed  Google Scholar 

  3. Ledeen, R., Wu, G.: Gangliosides of the nervous system. Methods Mol. Biol. 1804, 19–55 (2018)

    CAS  PubMed  Google Scholar 

  4. Sonnino, S., Chiricozzi, E., Grassi, S., Mauri, L., Prioni, S., Prinetti, A.: Gangliosides in membrane organization. Prog. Mol. Biol. Transl. Sci. 156, 83–120 (2018)

    PubMed  Google Scholar 

  5. Prinetti, A., Chigorno, V., Prioni, S., Loberto, N., Marano, N., Tettamanti, G., Sonnino, S.: Changes in the lipid turnover, composition, and organization, as sphingolipid-enriched membrane domains, in rat cerebellar granule cells developing in vitro. J. Biol. Chem. 276, 21136–21145 (2001)

    CAS  PubMed  Google Scholar 

  6. Prinetti, A., Prioni, S., Chiricozzi, E., Schuchman, E.H., Chigorno, V., Sonnino, S.: Secondary alterations of sphingolipid metabolism in lysosomal storage diseases. Neurochem. Res. 36, 1654–1668 (2011)

    CAS  PubMed  Google Scholar 

  7. Chiricozzi, E., Ciampa, M.G., Brasile, G., Compostella, F., Prinetti, A., Nakayama, H., Ekyalongo, R.C., Iwabuchi, K., Sonnino, S., Mauri, L.: Direct interaction, instrumental for signaling processes, between LacCer and Lyn in the lipid rafts of neutrophil-like cells. J. Lipid Res. 56, 129–141 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chiricozzi, E., Biase, E.D., Maggioni, M., Lunghi, G., Fazzari, M., Pome, D.Y., Casellato, R., Loberto, N., Mauri, L., Sonnino, S.: GM1 promotes TrkA-mediated neuroblastoma cell differentiation by occupying a plasma membrane domain different from TrkA. J. Neurochem. 149, 231–241 (2019)

    CAS  PubMed  Google Scholar 

  9. Chiricozzi, E., Loberto, N., Schiumarini, D., Samarani, M., Mancini, G., Tamanini, A., Lippi, G., Dechecchi, M.C., Bassi, R., Giussani, P., Aureli, M.: Sphingolipids role in the regulation of inflammatory response: from leukocyte biology to bacterial infection. J. Leukoc. Biol. 103, 445–456 (2018)

    CAS  PubMed  Google Scholar 

  10. Samarani, M., Loberto, N., Solda, G., Straniero, L., Asselta, R., Duga, S., Lunghi, G., Zucca, F.A., Mauri, L., Ciampa, M.G., Schiumarini, D., Bassi, R., Giussani, P., Chiricozzi, E., Prinetti, A., Aureli, M., Sonnino, S.: A lysosome-plasma membrane-sphingolipid axis linking lysosomal storage to cell growth arrest. FASEB J. 32, 5685–5702 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ledeen, R.W., Wu, G.: The multi-tasked life of GM1 ganglioside, a true factotum of nature. Trends Biochem. Sci. 40, 407–418 (2015)

    CAS  PubMed  Google Scholar 

  12. Schengrund, C.L.: Gangliosides: glycosphingolipids essential for normal neural development and function. Trends Biochem. Sci. 40, 397–406 (2015)

    CAS  PubMed  Google Scholar 

  13. Aureli, M., Mauri, L., Ciampa, M.G., Prinetti, A., Toffano, G., Secchieri, C., Sonnino, S.: GM1 Ganglioside: past studies and future potential. Mol. Neurobiol. 53, 1824–1842 (2016)

    CAS  PubMed  Google Scholar 

  14. Chiricozzi, E., Pome, D.Y., Maggioni, M., Di Biase, E., Parravicini, C., Palazzolo, L., Loberto, N., Eberini, I., Sonnino, S.: Role of the GM1 ganglioside oligosaccharide portion in the TrkA-dependent neurite sprouting in neuroblastoma cells. J. Neurochem. 143, 645–659 (2017)

    CAS  PubMed  Google Scholar 

  15. Chiricozzi, E., Maggioni, M., di Biase, E., Lunghi, G., Fazzari, M., Loberto, N., Elisa, M., Scalvini, F.G., Tedeschi, G., Sonnino, S.: The Neuroprotective role of the GM1 oligosaccharide, II3Neu5Ac-Gg4, in Neuroblastoma cells. Mol. Neurobiol. 56, 6673–6702 (2019)

    CAS  PubMed  Google Scholar 

  16. Evans, A., Neuman, N.: The Mighty Mitochondria Mol Cell. 61, 641 (2016)

    CAS  PubMed  Google Scholar 

  17. Winklhofer, K.F., Haass, C.: Mitochondrial dysfunction in Parkinson's disease. Biochim. Biophys. Acta. 1802, 29–44 (2010)

    CAS  PubMed  Google Scholar 

  18. Desideri, E., Martins, L.M.: Mitochondrial stress Signalling: HTRA2 and Parkinson's disease. Int J Cell Biol. 2012(607929), (2012)

  19. Nunnari, J., Suomalainen, A.: Mitochondria: in sickness and in health. Cell. 148, 1145–1159 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. De Girolamo, L.A., Hargreaves, A.J., Billett, E.E.: Protection from MPTP-induced neurotoxicity in differentiating mouse N2a neuroblastoma cells. J. Neurochem. 76, 650–660 (2001)

    PubMed  Google Scholar 

  21. Nicotra, A., Parvez, S.: Apoptotic molecules and MPTP-induced cell death. Neurotoxicol. Teratol. 24, 599–605 (2002)

    CAS  PubMed  Google Scholar 

  22. Meredith, G.E., Rademacher, D.J.: MPTP mouse models of Parkinson's disease: an update. J. Park. Dis. 1, 19–33 (2011)

    CAS  Google Scholar 

  23. Lipartiti, M., Lazzaro, A., Zanoni, R., Mazzari, S., Toffano, G., Leon, A.: Monosialoganglioside GM1 reduces NMDA neurotoxicity in neonatal rat brain. Exp. Neurol. 113, 301–305 (1991)

    CAS  PubMed  Google Scholar 

  24. Nakamura, K., Wu, G., Ledeen, R.W.: Protection of neuro-2a cells against calcium ionophore cytotoxicity by gangliosides. J. Neurosci. Res. 31, 245–253 (1992)

    CAS  PubMed  Google Scholar 

  25. Zakharova, I.O., Sokolova, T.V., Vlasova, Y.A., Furaev, V.V., Rychkova, M.P., Avrova, N.F.: GM1 ganglioside activates ERK1/2 and Akt downstream of Trk tyrosine kinase and protects PC12 cells against hydrogen peroxide toxicity. Neurochem. Res. 39, 2262–2275 (2014)

    CAS  PubMed  Google Scholar 

  26. Saulino, M.F., Schengrund, C.L.: Effects of specific gangliosides on the in vitro proliferation of MPTP-susceptible cells. J. Neurochem. 61, 1277–1283 (1993)

    CAS  PubMed  Google Scholar 

  27. Hadjiconstantinou, M., Mariani, A.P., Neff, N.H.: GM1 ganglioside-induced recovery of nigrostriatal dopaminergic neurons after MPTP: an immunohistochemical study. Brain Res. 484, 297–303 (1989)

    CAS  PubMed  Google Scholar 

  28. Schneider, J.S., Pope, A., Simpson, K., Taggart, J., Smith, M.G., DiStefano, L.: Recovery from experimental parkinsonism in primates with GM1 ganglioside treatment. Science. 256, 843–846 (1992)

    CAS  PubMed  Google Scholar 

  29. Schneider, J.S., Kean, A., DiStefano, L.: GM1 ganglioside rescues substantia nigra pars compacta neurons and increases dopamine synthesis in residual nigrostriatal dopaminergic neurons in MPTP-treated mice. J. Neurosci. Res. 42, 117–123 (1995)

    CAS  PubMed  Google Scholar 

  30. Chiricozzi, E., Mauri, L., Lunghi, G., Di Biase, E., Fazzari, M., Maggioni, M., Valsecchi, M., Prioni, S., Loberto, N., Pome, D.Y., Ciampa, M.G., Fato, P., Verlengia, G., Cattaneo, S., Assini, R., Wu, G., Alselehdar, S., Ledeen, R.W., Sonnino, S.: Parkinson's disease recovery by GM1 oligosaccharide treatment in the B4galnt1+/− mouse model. Sci. Rep. 9, 19330 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wiegandt, H., Bucking, H.W.: Carbohydrate components of extraneuronal gangliosides from bovine and human spleen, and bovine kidney. Eur. J. Biochem. 15, 287–292 (1970)

    CAS  PubMed  Google Scholar 

  32. Tettamanti, G., Bonali, F., Marchesini, S., Zambotti, V.: A new procedure for the extraction, purification and fractionation of brain gangliosides. Biochim. Biophys. Acta. 296, 160–170 (1973)

    CAS  PubMed  Google Scholar 

  33. Acquotti, D., Cantu, L., Ragg, E., Sonnino, S.: Geometrical and conformational properties of ganglioside GalNAc-GD1a, IV4GalNAcIV3Neu5AcII3Neu5AcGgOse4Cer. Eur. J. Biochem. 225, 271–288 (1994)

    CAS  PubMed  Google Scholar 

  34. Audano, M., Pedretti, S., Crestani, M., Caruso, D., De Fabiani, E., Mitro, N.: Mitochondrial dysfunction increases fatty acid beta-oxidation and translates into impaired neuroblast maturation. FEBS Lett. 593, 3173–3189 (2019)

    CAS  PubMed  Google Scholar 

  35. Fazzari, M., Frasca, A., Bifari, F., Landsberger, N.: Aminoglycoside drugs induce efficient read-through of CDKL5 nonsense mutations, slightly restoring its kinase activity. RNA Biol. 16, 1414–1423 (2019)

    PubMed  Google Scholar 

  36. Balestra, D., Giorgio, D., Bizzotto, M., Fazzari, M., Ben Zeev, B., Pinotti, M., Landsberger, N., Frasca, A.: Splicing mutations impairing CDKL5 expression and activity can be efficiently rescued by U1snRNA-based therapy. Int. J. Mol. Sci. 20, (2019)

  37. Cardani, S., Di Lascio, S., Belperio, D., Di Biase, E., Ceccherini, I., Benfante, R., Fornasari, D.: Desogestrel down-regulates PHOX2B and its target genes in progesterone responsive neuroblastoma cells. Exp. Cell Res. 370, 671–679 (2018)

    CAS  PubMed  Google Scholar 

  38. Audano, M., Pedretti, S., Cermenati, G., Brioschi, E., Diaferia, G.R., Ghisletti, S., Cuomo, A., Bonaldi, T., Salerno, F., Mora, M., Grigore, L., Garlaschelli, K., Baragetti, A., Bonacina, F., Catapano, A.L., Norata, G.D., Crestani, M., Caruso, D., Saez, E., De Fabiani, E., Mitro, N.: Zc3h10 is a novel mitochondrial regulator. EMBO Rep. 19, (2018)

  39. Aureli, M., Bassi, R., Prinetti, A., Chiricozzi, E., Pappalardi, B., Chigorno, V., Di Muzio, N., Loberto, N., Sonnino, S.: Ionizing radiations increase the activity of the cell surface glycohydrolases and the plasma membrane ceramide content. Glycoconj. J. 29, 585–597 (2012)

    CAS  PubMed  Google Scholar 

  40. Simunovic, F., Yi, M., Wang, Y., Macey, L., Brown, L.T., Krichevsky, A.M., Andersen, S.L., Stephens, R.M., Benes, F.M., Sonntag, K.C.: Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson's disease pathology. Brain. 132, 1795–1809 (2009)

    PubMed  Google Scholar 

  41. Strauss, K.M., Martins, L.M., Plun-Favreau, H., Marx, F.P., Kautzmann, S., Berg, D., Gasser, T., Wszolek, Z., Muller, T., Bornemann, A., Wolburg, H., Downward, J., Riess, O., Schulz, J.B., Kruger, R.: Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease. Hum. Mol. Genet. 14, 2099–2111 (2005)

    CAS  PubMed  Google Scholar 

  42. Moisoi, N., Klupsch, K., Fedele, V., East, P., Sharma, S., Renton, A., Plun-Favreau, H., Edwards, R.E., Teismann, P., Esposti, M.D., Morrison, A.D., Wood, N.W., Downward, J., Martins, L.M.: Mitochondrial dysfunction triggered by loss of HtrA2 results in the activation of a brain-specific transcriptional stress response. Cell Death Differ. 16, 449–464 (2009)

    CAS  PubMed  Google Scholar 

  43. Sasaki, S.: Determination of altered mitochondria ultrastructure by electron microscopy. Methods Mol. Biol. 648, 279–290 (2010)

    PubMed  Google Scholar 

  44. Connolly, N.M.C., Theurey, P., Adam-Vizi, V., Bazan, N.G., Bernardi, P., Bolanos, J.P., Culmsee, C., Dawson, V.L., Deshmukh, M., Duchen, M.R., Dussmann, H., Fiskum, G., Galindo, M.F., Hardingham, G.E., Hardwick, J.M., Jekabsons, M.B., Jonas, E.A., Jordan, J., Lipton, S.A., Manfredi, G., Mattson, M.P., McLaughlin, B., Methner, A., Murphy, A.N., Murphy, M.P., Nicholls, D.G., Polster, B.M., Pozzan, T., Rizzuto, R., Satrustegui, J., Slack, R.S., Swanson, R.A., Swerdlow, R.H., Will, Y., Ying, Z., Joselin, A., Gioran, A., Moreira Pinho, C., Watters, O., Salvucci, M., Llorente-Folch, I., Park, D.S., Bano, D., Ankarcrona, M., Pizzo, P., Prehn, J.H.M.: Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death Differ. 25, 542–572 (2018)

    CAS  PubMed  Google Scholar 

  45. Karunakaran, S., Saeed, U., Mishra, M., Valli, R.K., Joshi, S.D., Meka, D.P., Seth, P., Ravindranath, V.: Selective activation of p38 mitogen-activated protein kinase in dopaminergic neurons of substantia nigra leads to nuclear translocation of p53 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice. J. Neurosci. 28, 12500–12509 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Xu, S.F., Zhang, Y.H., Wang, S., Pang, Z.Q., Fan, Y.G., Li, J.Y., Wang, Z.Y., Guo, C.: Lactoferrin ameliorates dopaminergic neurodegeneration and motor deficits in MPTP-treated mice. Redox Biol. 21, 101090 (2019)

    CAS  PubMed  Google Scholar 

  47. Miller, S.W., Trimmer, P.A., Parker Jr., W.D., Davis, R.E.: Creation and characterization of mitochondrial DNA-depleted cell lines with "neuronal-like" properties. J. Neurochem. 67, 1897–1907 (1996)

    CAS  PubMed  Google Scholar 

  48. Arduino, D.M., Esteves, A.R., Swerdlow, R.H., Cardoso, S.M.: A cybrid cell model for the assessment of the link between mitochondrial deficits and sporadic Parkinson's disease. Methods Mol. Biol. 1265, 415–424 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Sazonova, M.A., Sinyov, V.V., Ryzhkova, A.I., Galitsyna, E.V., Melnichenko, A.A., Postnov, A.Y., Orekhov, A.N., Sobenin, I.A.: Cybrid models of pathological cell processes in different diseases. Oxidative Med. Cell. Longev. 2018(4647214), (2018)

  50. Reddy, P.H.: Mitochondrial medicine for aging and neurodegenerative diseases. NeuroMolecular Med. 10, 291–315 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Osellame, L.D., Blacker, T.S., Duchen, M.R.: Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab. 26, 711–723 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Perier, C., Vila, M.: Mitochondrial biology and Parkinson's disease. Cold Spring Harb Perspect Med. 2, a009332 (2012)

    PubMed  PubMed Central  Google Scholar 

  53. Farshbaf, M.J.: Succinate dehydrogenase in Parkinson's disease. Front. Biol. 12, 175–182 (2017)

    CAS  Google Scholar 

  54. Langston, J.W., Irwin, I., Langston, E.B., Forno, L.S.: 1-Methyl-4-phenylpyridinium ion (MPP+): identification of a metabolite of MPTP, a toxin selective to the substantia nigra. Neurosci. Lett. 48, 87–92 (1984)

    CAS  PubMed  Google Scholar 

  55. Beal, M.F.: Experimental models of Parkinson's disease. Nat. Rev. Neurosci. 2, 325–334 (2001)

    CAS  PubMed  Google Scholar 

  56. Schengrund, C.L., Prouty, C.: Oligosaccharide portion of GM1 enhances process formation by S20Y neuroblastoma cells. J. Neurochem. 51, 277–282 (1988)

    CAS  PubMed  Google Scholar 

  57. Wu, G., Lu, Z.H., Kulkarni, N., Ledeen, R.W.: Deficiency of ganglioside GM1 correlates with Parkinson's disease in mice and humans. J. Neurosci. Res. 90, 1997–2008 (2012)

    CAS  PubMed  Google Scholar 

  58. Hadaczek, P., Wu, G., Sharma, N., Ciesielska, A., Bankiewicz, K., Davidow, A.L., Lu, Z.H., Forsayeth, J., Ledeen, R.W.: GDNF signaling implemented by GM1 ganglioside; failure in Parkinson's disease and GM1-deficient murine model. Exp. Neurol. 263, 177–189 (2015)

    CAS  PubMed  Google Scholar 

  59. Schneider, J.S., DiStefano, L.: Oral administration of semisynthetic sphingolipids promotes recovery of striatal dopamine concentrations in a murine model of parkinsonism. Neurology. 44, 748–750 (1994)

    CAS  PubMed  Google Scholar 

  60. Wu, G., Lu, Z.H., Xie, X., Ledeen, R.W.: Susceptibility of cerebellar granule neurons from GM2/GD2 synthase-null mice to apoptosis induced by glutamate excitotoxicity and elevated KCl: rescue by GM1 and LIGA20. Glycoconj. J. 21, 305–313 (2004)

    CAS  PubMed  Google Scholar 

  61. Wu, G., Lu, Z.H., Wang, J., Wang, Y., Xie, X., Meyenhofer, M.F., Ledeen, R.W.: Enhanced susceptibility to kainate-induced seizures, neuronal apoptosis, and death in mice lacking gangliotetraose gangliosides: protection with LIGA 20, a membrane-permeant analog of GM1. J. Neurosci. 25, 11014–11022 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Schneider, J.S., Seyfried, T.N., Choi, H.S., Kidd, S.K.: Intraventricular Sialidase administration enhances GM1 Ganglioside expression and is partially Neuroprotective in a mouse model of Parkinson's disease. PLoS One. 10, e0143351 (2015)

    PubMed  PubMed Central  Google Scholar 

  63. Brailovskaya, I.V., Sokolova, T.V., Kobylyanskii, A.G., Avrova, N.F., et al.: Zh. Evol. Biokhim. Fiziol. 50, 155–157 (2014)

    CAS  PubMed  Google Scholar 

  64. Korotkov, S.M., Sokolova, T.V., Avrova, N.F.: Gangliosides GM1 and GD1a normalize respiratory rates of rat brain mitochondria reduced by tert-butyl hydroperoxide. J. Evol. Biochem. Physiol. 53, 200–207 (2017)

    CAS  Google Scholar 

  65. Schapira, A.H., Cooper, J.M., Dexter, D., Clark, J.B., Jenner, P., Marsden, C.D.: Mitochondrial complex I deficiency in Parkinson's disease. J. Neurochem. 54, 823–827 (1990)

    CAS  PubMed  Google Scholar 

  66. Janetzky, B., Hauck, S., Youdim, M.B., Riederer, P., Jellinger, K., Pantucek, F., Zochling, R., Boissl, K.W., Reichmann, H.: Unaltered aconitase activity, but decreased complex I activity in substantia nigra pars compacta of patients with Parkinson's disease. Neurosci. Lett. 169, 126–128 (1994)

    CAS  PubMed  Google Scholar 

  67. Keeney, P.M., Xie, J., Capaldi, R.A., Bennett Jr., J.P.: Parkinson's disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J. Neurosci. 26, 5256–5264 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Parker Jr., W.D., Parks, J.K., Swerdlow, R.H.: Complex I deficiency in Parkinson's disease frontal cortex. Brain Res. 1189, 215–218 (2008)

    CAS  PubMed  Google Scholar 

  69. Fernandez-Gomez, F.J., Galindo, M.F., Gomez-Lazaro, M., Yuste, V.J., Comella, J.X., Aguirre, N., Jordan, J.: Malonate induces cell death via mitochondrial potential collapse and delayed swelling through an ROS-dependent pathway. Br. J. Pharmacol. 144, 528–537 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Greene, J.G., Greenamyre, J.T.: Characterization of the excitotoxic potential of the reversible succinate dehydrogenase inhibitor malonate. J. Neurochem. 64, 430–436 (1995)

    CAS  PubMed  Google Scholar 

  71. Liot, G., Bossy, B., Lubitz, S., Kushnareva, Y., Sejbuk, N., Bossy-Wetzel, E.: Complex II inhibition by 3-NP causes mitochondrial fragmentation and neuronal cell death via an NMDA- and ROS-dependent pathway. Cell Death Differ. 16, 899–909 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Varki, A., Cummings, R.D., Aebi, M., Packer, N.H., Seeberger, P.H., Esko, J.D., Stanley, P., Hart, G., Darvill, A., Kinoshita, T., Prestegard, J.J., Schnaar, R.L., Freeze, H.H., Marth, J.D., Bertozzi, C.R., Etzler, M.E., Frank, M., Vliegenthart, J.F., Lutteke, T., Perez, S., Bolton, E., Rudd, P., Paulson, J., Kanehisa, M., Toukach, P., Aoki-Kinoshita, K.F., Dell, A., Narimatsu, H., York, W., Taniguchi, N., Kornfeld, S.: Symbol nomenclature for graphical representations of Glycans. Glycobiology. 25, 1323–1324 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Martorana, F., Gaglio, D., Bianco, M.R., Aprea, F., Virtuoso, A., Bonanomi, M., Alberghina, L., Papa, M., Colangelo, A.M.: Differentiation by nerve growth factor (NGF) involves mechanisms of crosstalk between energy homeostasis and mitochondrial remodeling. Cell Death Dis. 9, 391 (2018)

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by University of Milano departmental funds RV_TAR16SSONN_M to SS and Fond PSR2017_RONDELLI-CHIRICOZZI to EC, by Intramural Transition Grant from the University of Milano to NM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nico Mitro or Elena Chiricozzi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.40 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazzari, M., Audano, M., Lunghi, G. et al. The oligosaccharide portion of ganglioside GM1 regulates mitochondrial function in neuroblastoma cells. Glycoconj J 37, 293–306 (2020). https://doi.org/10.1007/s10719-020-09920-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-020-09920-4

Keywords

Navigation