Skip to main content

Advertisement

Log in

Comparative analysis of CpG islands in equine infectious anemia virus strains

  • Original Paper
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Increasing evidence suggests that DNA methylation has key roles in the replication of retroviruses, including lentiviruses, and pathogenesis of diseases. However, the precise characteristics of CpG islands are not known for many retroviruses. In this study, we compared the distribution of CpG islands among strains of equine infectious anemia virus (EIAV), a lentivirus in the family Retroviridae and a model for HIV research. We identified CpG islands in 32 full-length EIAV genomic sequences obtained from the GenBank database using MethPrimer. Only one CpG island, from 100 to 120 bp, was identified in the genomes of EIAV strains DV10, DLV3-A, and DLV5-10 from China, V26 and V70 from Japan, and IRE H3, IRE F2, IRE F3, and IRE F4 from Ireland. Importantly, the CpG island was located within the Rev gene, which is required for the expression of viral cis-acting elements and the production of new virions. These results suggest that the distribution, length, and genetic properties of CpG islands differ among EIAV strains. Future research should focus on the biological significance of this CpG island within rev to improve our understanding of the precise roles of CpG islands in epigenetic regulation in the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Acevedo A, Brodsky L, Andino R (2014) Mutational and fitness landscapes of an RNA virus revealed through population sequencing. Nature 505(7485):686–690

    CAS  PubMed  Google Scholar 

  2. Alexandersen S, Carpenter S (1991) Characterization of variable regions in the envelope and S3 open reading frame of equine infectious anemia virus. J Virol 65(8):4255–4262

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ando M, Saito Y, Xu G, Bui NQ, Medetgul-Ernar K, Pu M, Fisch K, Ren S, Sakai A, Fukusumi T, Liu C, Haft S, Pang J, Mark A, Gaykalova DA, Guo T, Favorov AV, Yegnasubramanian S, Fertig EJ, Ha P, Tamayo P, Yamasoba T, Ideker T, Messer K, Califano JA (2019) Chromatin dysregulation and DNA methylation at transcription start sites associated with transcriptional repression in cancers. Nat Commun 10(1):2188

    PubMed  PubMed Central  Google Scholar 

  4. Belshan M, Baccam P, Oaks JL, Sponseller BA, Murphy SC, Cornette J, Carpenter S (2001) Genetic and biological variation in equine infectious anemia virus Rev correlates with variable stages of clinical disease in an experimentally infected pony. Virology 279(1):185–200

    CAS  PubMed  Google Scholar 

  5. Blazkova J, Trejbalova K, Gondois-Rey F, Halfon P, Philibert P, Guiguen A, Verdin E, Olive D, Van Lint C, Hejnar J, Hirsch I (2009) CpG methylation controls reactivation of HIV from latency. PLoS Pathog 5(8):e1000554

    PubMed  PubMed Central  Google Scholar 

  6. Carpenter S, Chen W, Dorman K (2011) Rev Variation during Persistent Lentivirus Infection. Viruses 3(1):1–11

    PubMed  PubMed Central  Google Scholar 

  7. Carpenter S, Dobbs D (2010) Molecular and biological characterization of equine infectious anemia virus Rev. Curr HIV Res 8(1):87–93

    CAS  PubMed  Google Scholar 

  8. Chavez L, Kauder S, Verdin E (2011) In vivo, in vitro, and in silico analysis of methylation of the HIV-1 provirus. Methods 53(1):47–53

    CAS  PubMed  Google Scholar 

  9. Cook RF, Leroux C, Issel CJ (2013) Equine infectious anemia and equine infectious anemia virus in 2013: a review. Vet Microbiol 167(1–2):181–204

    CAS  PubMed  Google Scholar 

  10. Craigo JK, Montelaro RC (2013) Lessons in AIDS vaccine development learned from studies of equine infectious, anemia virus infection and immunity. Viruses 5(12):2963–2976

    PubMed  PubMed Central  Google Scholar 

  11. Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25(10):1010–1022

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Dong JB, Zhu W, Cook FR, Goto Y, Horii Y, Haga T (2013) Identification of a novel equine infectious anemia virus field strain isolated from feral horses in southern Japan. J Gen Virol 94(Pt 2):360–365

    CAS  PubMed  Google Scholar 

  13. Dostal V, Churchill MEA (2019) Cytosine methylation of mitochondrial DNA at CpG sequences impacts transcription factor A DNA binding and transcription. Biochim Biophys Acta Gene Regul Mech 1862(5):598–607

    CAS  PubMed  Google Scholar 

  14. Duverger A, Jones J, May J, Bibollet-Ruche F, Wagner FA, Cron RQ, Kutsch O (2009) Determinants of the establishment of human immunodeficiency virus type 1 latency. J Virol 83(7):3078–3093

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gallastegui E, Millan-Zambrano G, Terme JM, Chavez S, Jordan A (2011) Chromatin reassembly factors are involved in transcriptional interference promoting HIV latency. J Virol 85(7):3187–3202

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Han Y, Lin YB, An W, Xu J, Yang HC, O'Connell K, Dordai D, Boeke JD, Siliciano JD, Siliciano RF (2008) Orientation-dependent regulation of integrated HIV-1 expression by host gene transcriptional readthrough. Cell Host Microbe 4(2):134–146

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hejnar J, Hajkova P, Plachy J, Elleder D, Stepanets V, Svoboda J (2001) CpG island protects Rous sarcoma virus-derived vectors integrated into nonpermissive cells from DNA methylation and transcriptional suppression. Proc Natl Acad Sci USA 98(2):565–569

    CAS  PubMed  Google Scholar 

  18. Hendrich B, Bird A (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18(11):6538–6547

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13(7):484–492

    CAS  PubMed  Google Scholar 

  20. Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19(2):187–191

    CAS  PubMed  Google Scholar 

  21. Jordan A, Defechereux P, Verdin E (2001) The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation. EMBO J 20(7):1726–1738

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Koiwa T, Hamano-Usami A, Ishida T, Okayama A, Yamaguchi K, Kamihira S, Watanabe T (2002) 5'-long terminal repeat-selective CpG methylation of latent human T-cell leukemia virus type 1 provirus in vitro and in vivo. J Virol 76(18):9389–9397

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lauring AS, Frydman J, Andino R (2013) The role of mutational robustness in RNA virus evolution. Nat Rev Microbiol 11(5):327–336

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lavie L, Kitova M, Maldener E, Meese E, Mayer J (2005) CpG methylation directly regulates transcriptional activity of the human endogenous retrovirus family HERV-K(HML-2). J Virol 79(2):876–883

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lenasi T, Contreras X, Peterlin BM (2008) Transcriptional interference antagonizes proviral gene expression to promote HIV latency. Cell Host Microbe 4(2):123–133

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Leroux C, Cadore JL, Montelaro RC (2004) Equine Infectious Anemia Virus (EIAV): what has HIV's country cousin got to tell us? Vet Res 35(4):485–512

    CAS  PubMed  Google Scholar 

  27. Leroux C, Craigo JK, Issel CJ, Montelaro RC (2001) Equine infectious anemia virus genomic evolution in progressor and nonprogressor ponies. J Virol 75(10):4570–4583

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lewinski MK, Yamashita M, Emerman M, Ciuffi A, Marshall H, Crawford G, Collins F, Shinn P, Leipzig J, Hannenhalli S, Berry CC, Ecker JR, Bushman FD (2006) Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog 2(6):e60

    PubMed  PubMed Central  Google Scholar 

  29. Lichtenstein DL, Craigo JK, Leroux C, Rushlow KE, Cook RF, Cook SJ, Issel CJ, Montelaro RC (1999) Effects of long terminal repeat sequence variation on equine infectious anemia virus replication in vitro and in vivo. Virology 263(2):408–417

    CAS  PubMed  Google Scholar 

  30. Lim KH, Park ES, Kim DH, Cho KC, Kim KP, Park YK, Ahn SH, Park SH, Kim KH, Kim CW, Kang HS, Lee AR, Park S, Sim H, Won J, Seok K, You JS, Lee JH, Yi NJ, Lee KW, Suh KS, Seong BL, Kim KH (2018) Suppression of interferon-mediated anti-HBV response by single CpG methylation in the 5'-UTR of TRIM22. Gut 67(1):166–178

    CAS  PubMed  Google Scholar 

  31. Ma J, Jiang C, Lin Y, Wang X, Zhao L, Xiang W, Shao Y, Shen R, Kong X, Zhou J (2009) In vivo evolution of the gp90 gene and consistently low plasma viral load during transient immune suppression demonstrate the safety of an attenuated equine infectious anemia virus (EIAV) vaccine. Arch Virol 154(5):867–873

    CAS  PubMed  Google Scholar 

  32. Payne SL, La Celle K, Pei XF, Qi XM, Shao H, Steagall WK, Perry S, Fuller F (1999) Long terminal repeat sequences of equine infectious anaemia virus are a major determinant of cell tropism. J Gen Virol 80(Pt 3):755–759

    CAS  PubMed  Google Scholar 

  33. Pion M, Jaramillo-Ruiz D, Martinez A, Munoz-Fernandez MA, Correa-Rocha R (2013) HIV infection of human regulatory T cells downregulates Foxp3 expression by increasing DNMT3b levels and DNA methylation in the FOXP3 gene. AIDS 27(13):2019–2029

    CAS  PubMed  Google Scholar 

  34. Quinlivan M, Cook F, Kenna R, Callinan JJ, Cullinane A (2013) Genetic characterization by composite sequence analysis of a new pathogenic field strain of equine infectious anemia virus from the 2006 outbreak in Ireland. J Gen Virol 94(Pt 3):612–622

    CAS  PubMed  Google Scholar 

  35. Robbins PB, Skelton DC, Yu XJ, Halene S, Leonard EH, Kohn DB (1998) Consistent, persistent expression from modified retroviral vectors in murine hematopoietic stem cells. Proc Natl Acad Sci USA 95(17):10182–10187

    CAS  PubMed  Google Scholar 

  36. Saxonov S, Berg P, Brutlag DL (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci USA 103(5):1412–1417

    CAS  PubMed  Google Scholar 

  37. Shan L, Yang HC, Rabi SA, Bravo HC, Shroff NS, Irizarry RA, Zhang H, Margolick JB, Siliciano JD, Siliciano RF (2011) Influence of host gene transcription level and orientation on HIV-1 latency in a primary-cell model. J Virol 85(11):5384–5393

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang X, Wang S, Lin Y, Jiang C, Ma J, Zhao L, Lv X, Wang F, Shen R, Zhou J (2011) Unique evolution characteristics of the envelope protein of EIAV(LN(4)(0)), a virulent strain of equine infectious anemia virus. Virus Genes 42(2):220–228

    CAS  PubMed  Google Scholar 

  39. Wang X, Lin Y, Li Q, Liu Q, Zhao W, Du C, Chen J, Wang X, Zhou J (2016) Genetic evolution during the development of an attenuated EIAV vaccine. Retrovirology 13(1):9–9

    PubMed  PubMed Central  Google Scholar 

  40. Watt F, Molloy PL (1988) Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev 2(9):1136–1143

    CAS  PubMed  Google Scholar 

  41. Wei L, Fan X, Lu X, Zhao L, Xiang W, Zhang X, Xue F, Shao Y, Shen R, Wang X (2009) Genetic variation in the long terminal repeat associated with the transition of Chinese equine infectious anemia virus from virulence to avirulence. Virus Genes 38(2):285–288

    CAS  PubMed  Google Scholar 

  42. Wu X, Li Y, Crise B, Burgess SM (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300(5626):1749–1751

    CAS  PubMed  Google Scholar 

  43. Zhong C, Hou Z, Huang J, Xie Q, Zhong Y (2015) Mutations and CpG islands among hepatitis B virus genotypes in Europe. BMC Bioinform 16:38

    Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Nanchong Vocational and Technical College fund for basic scientific research (Grant Nos. ZRA1904 and NZYBZ2002).

Author information

Authors and Affiliations

Authors

Contributions

YYY and WHY conducted the phylogenetic and sequence analyses. LQ conducted CpG analyses and wrote the manuscript. All authors have read and approved the fnal manuscript.

Corresponding author

Correspondence to Qiang Liu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Edited by Takeshi Noda.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Yu, YY. & Wang, HY. Comparative analysis of CpG islands in equine infectious anemia virus strains. Virus Genes 56, 339–346 (2020). https://doi.org/10.1007/s11262-020-01749-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-020-01749-1

Keywords

Navigation