Skip to main content
Log in

Catalytic oxidation of CO over Pt/Fe3O4 catalysts: Tuning O2 activation and CO adsorption

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

The self-inhibition behavior due to CO poisoning on Pt metal particles strongly impairs the performance of CO oxidation. It is an effective method to use reducible metal oxides for supporting Pt metal particles to avoid self-inhibition and to improve catalytic performance. In this work, we used in situ reductions of chloroplatinic acid on commercial Fe3O4 powder to prepare heterogeneousstructured Pt/Fe3O4 catalysts in the solution of ethylene glycol. The heterogeneous Pt/Fe3O4 catalysts achieved a better catalytic performance of CO oxidation compared with the Fe3O4 powder. The temperatures of 50% and 90% CO conversion were achieved above 260°C and 290°C at Pt/Fe3O4, respectively. However, they are accomplished on Fe3O4 at temperatures higher than 310°C. XRD, XPS, and H2-TPR results confirmed that the metallic Pt atoms have a strong synergistic interaction with the Fe3O4 supports. TGA results and transient DRIFTS results proved that the Pt metal particles facilitate the release of lattice oxygen and the formation of oxygen vacancies on Fe3O4. The combined results of O2-TPD and DRIFTS indicated that the activation step of oxygen molecules at surface oxygen vacancies could potentially be the rate-determining step of the catalytic CO oxidation at Pt/ Fe3O4 catalysts. The reaction pathway involves a Pt-assisted Mars-van Krevelen (MvK) mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allian A D, Takanabe K, Fujdala K L, Hao X, Truex T J, Cai J, Buda C, Neurock M, Iglesia E (2011). Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters. Journal of the American Chemical Society, 133(12): 4498–4517

    Article  CAS  Google Scholar 

  • Anderson R M, Zhang L, Loussaert J A, Frenkel A I, Henkelman G, Crooks R M (2013). An experimental and theoretical investigation of the inversion of Pd@Pt Core@Shell dendrimer-encapsulated nanoparticles. ACS Nano, 7(10): 9345–9353

    Article  CAS  Google Scholar 

  • Ayyappan S, Gnanaprakash G, Panneerselvam G, Antony M, Philip J (2008). Effect of surfactant monolayer on reduction of Fe3O4 nanoparticles under vacuum. Journal of Physical Chemistry C, 112(47): 18376–18383

    Article  CAS  Google Scholar 

  • Bazin P, Saur O, Lavalley J, Daturi M, Blanchard G (2005). FT-IR study of CO adsorption on Pt/CeO2: Characterisation and structural rearrangement of small Pt particles. Physical Chemistry Chemical Physics, 7(1): 187–194

    Article  CAS  Google Scholar 

  • Beccat P, Bertolini J, Gauthier Y, Massardier J, Ruiz P (1990). Crotonaldehyde and methylcrotonaldehyde hydrogenation over Pt (111) and Pt80Fe20 (111) single crystals. Journal of Catalysis, 126(2): 451–456

    Article  CAS  Google Scholar 

  • Benvenutti E V, Franken L, Moro C C, Davanzo C U (1999). FTIR study of hydrogen and carbon monoxide adsorption on Pt/TiO2, Pt/ZrO2, and Pt/Al2O3. Langmuir, 15(23): 8140–8146

    Article  CAS  Google Scholar 

  • Bera P, Gayen A, Hegde M S, Lalla N P, Spadaro L, Frusteri F, Arena F (2003). Promoting effect of CeO2 in combustion synthesized Pt/CeO2 catalyst for CO oxidation. Journal of Physical Chemistry B, 107(25): 6122–6130

    Article  CAS  Google Scholar 

  • Chavadej S, Saktrakool K, Rangsunvigit P, Lobban L L, Sreethawong T (2007). Oxidation of ethylene by a multistage corona discharge system in the absence and presence of Pt/TiO2. Chemical Engineering Journal, 132(1–3): 345–353

    Article  CAS  Google Scholar 

  • Chen S, Si R, Taylor E, Janzen J, Chen J (2012). Synthesis of Pd/Fe3O4 hybrid nanocatalysts with controllable interface and enhanced catalytic activities for CO oxidation. Journal of Physical Chemistry C, 116(23): 12969–12976

    Article  CAS  Google Scholar 

  • Costa R C, Moura F C, Ardisson J, Fabris J, Lago R (2008). Highly active heterogeneous Fenton-like systems based on FeO/Fe3O4 composites prepared by controlled reduction of iron oxides. Applied Catalysis B: Environmental, 83(1–2): 131–139

    Article  CAS  Google Scholar 

  • Fu Q, Li W X, Yao Y, Liu H, Su H Y, Ma D, Gu X K, Chen L, Wang Z, Zhang H, Wang B, Bao X (2010). Interface-confined ferrous centers for catalytic oxidation. Science, 328(5982): 1141–1144

    Article  CAS  Google Scholar 

  • Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003). Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science, 301(5635): 935–938

    Article  CAS  Google Scholar 

  • Hadjiivanov K I, Vayssilov G N (2002). Characterization of oxide surfaces and zeolites by carbon monoxide as an IR probe molecule. Advances in Catalysis, 47: 328

    Google Scholar 

  • Ivanova A, Slavinskaya E, Gulyaev R, Zaikovskii V, Stonkus O, Danilova I, Plyasova L, Polukhina I, Boronin A (2010). Metal–support interactions in Pt/Al2O3 and Pd/Al2O3 catalysts for CO oxidation. Applied Catalysis B: Environmental, 97(1–2): 57–71

    Article  CAS  Google Scholar 

  • Jian W, Wang S P, Zhang H X, Bai F Q (2019). Disentangling the role of oxygen vacancies on the surface of Fe3O4 and g-Fe2O3. Inorganic Chemistry Frontiers, 6(10): 2660–2666

    Article  CAS  Google Scholar 

  • Li H, Jiao X, Li L, Zhao N, Xiao F, Wei W, Sun Y, Zhang B (2015). Synthesis of glycerol carbonate by direct carbonylation of glycerol with CO2 over solid catalysts derived from Zn/Al/La and Zn/Al/La/M (M = Li, Mg and Zr) hydrotalcites. Catalysis Science & Technology, 5(2): 989–1005

    Article  CAS  Google Scholar 

  • Liotta L, Di Carlo G, Pantaleo G, Venezia A (2010). Supported gold catalysts for CO oxidation and preferential oxidation of CO in H2 stream: Support effect. Catalysis Today, 158(1–2): 56–62

    Article  CAS  Google Scholar 

  • Liu W, Flytzani-Stephanopoulos M (1995). Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite catalysts: I. Catalyst composition and activity. Journal of Catalysis, 153(2): 304–316

    Article  CAS  Google Scholar 

  • ai]Liu X, Korotkikh O, Farrauto R (2002). Selective catalytic oxidation of CO in H2: Structural study of Fe oxide-promoted Pt/alumina catalyst. Applied Catalysis A, General, 226(1–2): 293–303

    Google Scholar 

  • Liu X, Zhou K, Wang L, Wang B, Li Y (2009). Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. Journal of the American Chemical Society, 131(9): 3140–3141

    Article  CAS  Google Scholar 

  • Liu Z P, Gong X Q, Kohanoff J, Sanchez C, Hu P (2003). Catalytic role of metal oxides in gold-based catalysts: A first principles study of CO oxidation on TiO2 supported Au. Physical Review Letters, 91(26): 266102

    Article  Google Scholar 

  • Loh K S, Lee Y H, Musa A, Salmah A A, Zamri I (2008). Use of Fe3O4 nanoparticles for enhancement of biosensor response to the herbicide 2,4-dichlorophenoxyacetic acid. Sensors (Basel), 8(9): 5775–5791

    Article  CAS  Google Scholar 

  • Newton M A, Ferri D, Smolentsev G, Marchionni V, Nachtegaal M (2015). Room-temperature carbon monoxide oxidation by oxygen over Pt/Al2O3 mediated by reactive platinum carbonates. Nature Communications, 6(1): 8675–8681

    Article  CAS  Google Scholar 

  • Oliveira L, Fabris J, Rios R, Mussel WDN, Lago R (2004). Fe3-xMnxO4 catalysts: Phase transformations and carbon monoxide oxidation. Applied Catalysis A, General, 259(2): 253–259

    Article  CAS  Google Scholar 

  • Olsson L, Fridell E (2002). The influence of Pt oxide formation and Pt dispersion on the reactions NO2 ↔ NO + 1/2O2 over Pt/Al2O3 and Pt/BaO/Al2O3. Journal of Catalysis, 210(2): 340–353 doi:10.1006/jcat.2002.3698

    Article  CAS  Google Scholar 

  • Passos F B, De Oliveira E R, Mattos L V, Noronha F B (2005). Partial oxidation of methane to synthesis gas on Pt/CexZr1–xO2 catalysts: the effect of the support reducibility and of the metal dispersion on the stability of the catalysts. Catalysis Today, 101(1): 23–30

    Article  CAS  Google Scholar 

  • Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J, Zhang T (2011). Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry, 3(8): 634–641

    Article  CAS  Google Scholar 

  • Ruiz Puigdollers A, Schlexer P, Tosoni S, Pacchioni G (2017). Increasing oxide reducibility: The role of metal/oxide interfaces in the formation of oxygen vacancies. ACS Catalysis, 7(10): 6493–6513

    Article  CAS  Google Scholar 

  • Salomonsson P, Griffin T, Kasemo B (1993). Oxygen desorption and oxidation-reduction kinetics with methane and carbon monoxide over perovskite type metal oxide catalysts. Applied Catalysis A, General, 104(2): 175–197

    Article  CAS  Google Scholar 

  • Scirè S, Minicò S, Crisafulli C, Satriano C, Pistone A (2003). Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts. Applied Catalysis B: Environmental, 40(1): 43–49

    Article  Google Scholar 

  • Shou M, Tanaka K I, Yoshioka K, Moro-Oka Y, Nagano S (2004). New catalyst for selective oxidation of CO in excess H2 designing of the active catalyst having different optimum temperature. Catalysis Today, 90(3–4): 255–261

    Article  CAS  Google Scholar 

  • Tanaka K I, Shou M, He H, Shi X (2006). Significant enhancement of the oxidation of CO by H2 and/or H2O on a FeOx/Pt/TiO2 catalyst. Catalysis Letters, 110(3–4): 185–190

    Article  CAS  Google Scholar 

  • Wang C, Liu S, Wang D, Chen Q (2018). Interface engineering of Ru–Co3O4 nanocomposites for enhancing CO oxidation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 6(23): 11037–11043

    Article  CAS  Google Scholar 

  • Wang C, Wang D, Yang Y, Li R, Chen C, Chen Q (2016). Enhanced CO oxidation on CeO2/Co3O4 nanojunctions derived from annealing of metal organic frameworks. Nanoscale, 8(47): 19761–19768

    Article  CAS  Google Scholar 

  • Yang S, Kim J, Tak Y J, Soon A, Lee H (2016). Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angewandte Chemie International Edition, 55(6): 2058–2062

    Article  CAS  Google Scholar 

  • Yao Y F Y (1984). The oxidation of CO and hydrocarbons over noble metal catalysts. Journal of Catalysis, 87(1): 152–162

    Article  CAS  Google Scholar 

  • Yin H, Wang C, Zhu H, Overbury S H, Sun S, Dai S (2008). Colloidal deposition synthesis of supported gold nanocatalysts based on Au–Fe3O4 dumbbell nanoparticles. Chemical Communications, 36: 4357–4359

    Article  Google Scholar 

  • Zhang C, Liu F, Zhai Y, Ariga H, Yi N, Liu Y, Asakura K, Flytzani-Stephanopoulos M, He H (2012). Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures. Angewandte Chemie International Edition, 51(38): 9628–9632

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate Ms. Christina Susan Gong for the assistance in proofreading. This work was financially supported by the National Key Research and Development Program of China (Nos. 2017YFC021100 and 2017YFC0210701), National Natural Science Foundation of China (Grant No. 21936005), and National Engineering Laboratory for Mobile Source Emission Control Technology (No. NELMS2018A12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Ma.

Additional information

Highlights

• Strong metal-support interaction exists on Pt/Fe3O4 catalysts.

• Pt metal particles facilitate the formation of oxygen vacancies on Fe3O4.

• Fe3O4 supports enhance the strength of CO adsorption on Pt metals.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Geng, Y., Ma, L. et al. Catalytic oxidation of CO over Pt/Fe3O4 catalysts: Tuning O2 activation and CO adsorption. Front. Environ. Sci. Eng. 14, 65 (2020). https://doi.org/10.1007/s11783-020-1244-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-020-1244-y

Keywords

Navigation