Skip to main content
Log in

Electrospun Ag-Doped SnO2 Hollow Nanofibers with High Antibacterial Activity

  • Review Paper
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

With the continuous improvement in medical science in modern times, the spread of bacterial infection has become a matter of global concern. Therefore, the search for biological medical materials with antibacterial function has become a focus of intense research. In this work, pure SnO2 and Ag-doped SnO2 hollow nanofibers were fabricated by a combination of an electrospinning method and a calcination procedure, and the effects of the doped Ag on antibacterial activity and catalytic antibacterial activity were subsequently investigated. Through the process of high-temperature calcination, a high heating rate would lead to the formation of a hollow tubular structure in SnO2 fibers, and Ag2O would be reduced to Ag0 by a facile process with appropriate thermal treatment. Additionally, the existence of SnO2 as a tetragonal rutile structure was confirmed. On the basis of pure SnO2, doping with Ag greatly improved the antibacterial activity and catalytic antibacterial activity of hollow nanofibers. The formation mechanism and the antibacterial mechanism of pure SnO2 and Ag-doped hollow nanofibers are also discussed. This study has broad application prospects for biological medicine.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zheng, K., et al.: Antimicrobial silver nanomaterials. Coord. Chem. Rev. 357, 1–17 (2018)

    CAS  Google Scholar 

  2. Hasan, J., Crawford, R.J., Ivanova, E.P.: Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol. 31(5), 295–304 (2013)

    CAS  Google Scholar 

  3. Hajipour, M.J., et al.: Antibacterial properties of nanoparticles. Trends Biotechnol. 30(10), 499–511 (2012)

    CAS  Google Scholar 

  4. Wang, C., et al.: Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity. J. Am. Chem. Soc. 132(1), 46–47 (2009)

    Google Scholar 

  5. Zhao, L., et al.: Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials 32(24), 5706–5716 (2011)

    CAS  Google Scholar 

  6. Arciola, C.R., et al.: Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 33(26), 5967–5982 (2012)

    CAS  Google Scholar 

  7. Magiorakos, A.P., et al.: Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18(3), 268–281 (2012)

    CAS  Google Scholar 

  8. Lemire, J.A., Harrison, J.J., Turner, R.J.: Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 11, 371 (2013)

    CAS  Google Scholar 

  9. Sirelkhatim, A., et al.: Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett 7(3), 219–242 (2015)

    CAS  Google Scholar 

  10. Besinis, A., De Peralta, T., Handy, R.D.: The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology 8(1), 1–16 (2014)

    CAS  Google Scholar 

  11. Zhang, Q., et al.: Low Ag-doped titanium dioxide nanosheet films with outstanding antimicrobial property. Environ. Sci. Technol. 44(21), 8270–8275 (2010)

    CAS  Google Scholar 

  12. Ijaz, F., et al.: Green synthesis of copper oxide nanoparticles using Abutilon indicum leaf extract: antimicrobial, antioxidant and photocatalytic dye degradation activitie. Trop. J. Pharm. Res. 16(4), 743–753 (2017)

    CAS  Google Scholar 

  13. Tsai, P.C., et al.: Uniform luminous perovskite nanofibers with color-tunability and improved stability prepared by one-step core/shell electrospinning. Small 14(22), e1704379 (2018)

    Google Scholar 

  14. Dias, H.B., et al.: Synthesis, characterization and application of Ag doped ZnO nanoparticles in a composite resin. Mater. Sci. Eng. C Mater. Biol. Appl. 96, 391–401 (2019)

    CAS  Google Scholar 

  15. Holtz, R.D., et al.: Nanostructured silver vanadate as a promising antibacterial additive to water-based paints. Nanomedicine 8(6), 935–940 (2012)

    CAS  Google Scholar 

  16. Kenry, Lim, C.T.: Nanofiber technology: current status and emerging developments. Prog. Polym. Sci. 70, 1–17 (2017)

    CAS  Google Scholar 

  17. Jiang, C., et al.: Facile synthesis of SnO2 nanocrystalline tubes by electrospinning and their fast response and high sensitivity to NOx at room temperature. CrystEngComm 14(8), 2739–2747 (2012)

    CAS  Google Scholar 

  18. Huang, H., et al.: Needle-like Zn-doped SnO2 nanorods with enhanced photocatalytic and gas sensing properties. Nanotechnology 23(10), 105502 (2012)

    Google Scholar 

  19. Kumar, S., Hesketh, P.J.: Interpretation of ac dielectrophoretic behavior of tin oxide nanobelts using Maxwell stress tensor approach modeling. Sens. Actuators B Chem. 161(1), 1198–1208 (2012)

    CAS  Google Scholar 

  20. Wang, C., et al.: Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity. J. Am. Chem. Soc. 132(1), 46–47 (2010)

    CAS  Google Scholar 

  21. Diantoro, M., et al.: Control of dielectric constant and anti-bacterial activity of PVA-PEG/x-SnO2 nanofiber. IOP Conf. Ser. Mater. Sci. Eng. 367, 012012 (2018)

    Google Scholar 

  22. Vasiliev, A.A.E., Varfolomeev, Volkov I.A., Simonenko, N.P., Arsenov, P.V., Vlasov, I.S., Ivanov, V.V., Pislyakov, A.V., Lagutin, A.S., Jahatspanian, I.E., Maeder, T.: Reducing humidity response of gas sensors for medical applications: use of spark discharge synthesis of metal oxide nanoparticles. Sensors 18(8), 2600 (2018)

    Google Scholar 

  23. Jahanshahi, P., et al.: Designing a non-invasive surface acoustic resonator for ultra-high sensitive ethanol detection for an on-the-spot health monitoring system. Biotechnol. Bioprocess Eng. 23(4), 394–404 (2018)

    CAS  Google Scholar 

  24. Liu, L., et al.: Improved H2 sensing properties of Co-doped SnO2 nanofibers. Sens. Actuators B Chem. 150(2), 806–810 (2010)

    CAS  Google Scholar 

  25. Jiang, M., et al.: Preparation and characterization of hybrid antimicrobial materials based on Zn–Lu composites. J. Mater. Sci. 53(21), 14922–14932 (2018)

    CAS  Google Scholar 

  26. Kuru, M., Şaşmaz Kuru, T., Bağcı, S.: The role of the calcium concentration effect on the structural and dielectric properties of mixed Ni–Zn ferrites. J. Mater. Sci. Mater. Electron. 30(6), 5438–5453 (2019)

    CAS  Google Scholar 

  27. Mohanapriya, P., et al.: Enhanced ethanol-gas sensing performance of Ce-doped SnO2 hollow nanofibers prepared by electrospinning. Sens. Actuators B Chem. 188, 872–878 (2013)

    CAS  Google Scholar 

  28. Chen, Y., et al.: Fabrication of a three-dimensional porous Z-scheme silver/silver bromide/graphitic carbon nitride@nitrogen-doped graphene aerogel with enhanced visible-light photocatalytic and antibacterial activities. J. Colloid Interface Sci. 536, 389–398 (2019)

    CAS  Google Scholar 

  29. Gilani, R., et al.: Elucidating the first-principles calculations of SnO2 Within DFT framework and beyond: a library for optimization of various pseudopotentials. Silicon 10(5), 2317–2328 (2018)

    CAS  Google Scholar 

  30. Maciela, A.P., et al.: Microstructural and morphological analysis of pure and Ce-doped tin dioxide nanoparticles. J. Eur. Ceram. Soc. 23(5), 707–713 (2003)

    Google Scholar 

  31. Weber, I.T., et al.: Influence of noble metals on the structural and catalytic properties of Ce-doped SnO2 systems. Sens. Actuators B Chem. 97(1), 31–38 (2004)

    CAS  Google Scholar 

  32. Gu, C., et al.: Porous flower-like SnO2 nanostructures as sensitive gas sensors for volatile organic compounds detection. Sens. Actuators B Chem. 174, 31–38 (2012)

    CAS  Google Scholar 

  33. Choi, Y.-H., Hong, S.-H.: H2 sensing properties in highly oriented SnO2 thin films. Sens. Actuators B Chem. 125(2), 504–509 (2007)

    CAS  Google Scholar 

  34. Dong, P., et al.: Plasmon enhanced photocatalytic and antimicrobial activities of Ag–TiO2 nanocomposites under visible light irradiation prepared by DBD cold plasma treatment. Mater. Sci. Eng. C 96, 197–204 (2019)

    CAS  Google Scholar 

  35. Cao, P., et al.: Covalent bonding of AgNPs to 304 stainless steel by reduction in situ for antifouling applications. Appl. Surf. Sci. 452, 201–209 (2018)

    CAS  Google Scholar 

  36. Basnet, P., et al.: Tea-phytochemicals functionalized Ag modified ZnO nanocomposites for visible light driven photocatalytic removal of organic water pollutants. Mater. Res. Express 6(8), 085095 (2019)

    CAS  Google Scholar 

  37. Wei, S., Zhou, M., Du, W.: Improved acetone sensing properties of ZnO hollow nanofibers by single capillary electrospinning. Sens. Actuators B Chem. 160(1), 753–759 (2011)

    CAS  Google Scholar 

  38. Dayal, P., Kyu, T.: Porous fiber formation in polymer-solvent system undergoing solvent evaporation. J. Appl. Phys. 100(4), 043512 (2006)

    Google Scholar 

  39. Agnihotri, S., Mukherji, S., Mukherji, S.: Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 4(8), 3974–3983 (2014)

    CAS  Google Scholar 

  40. Cai, Q., et al.: Insight into biological effects of zinc oxide nanoflowers on bacteria: why morphology matters. ACS Appl. Mater. Interfaces 8(16), 10109–10120 (2016)

    CAS  Google Scholar 

  41. Lok, C., et al.: Silver nanoparticles: partial oxidation and antibacterial activities. J. Biol. Inorg. Chem. 12(4), 527–534 (2007)

    CAS  Google Scholar 

  42. Jaiswal, S., et al.: Enhancement of the antibacterial properties of silver nanoparticles using beta-cyclodextrin as a capping agent. Int. J. Antimicrob. Agents 36(3), 280–283 (2010)

    CAS  Google Scholar 

  43. Loher, S., et al.: Micro-organism-triggered release of silver nanoparticles from biodegradable oxide carriers allows preparation of self-sterilizing polymer surfaces. Small 4(6), 824–832 (2008)

    CAS  Google Scholar 

  44. Li, W.R., et al.: Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 85(4), 1115–1122 (2010)

    CAS  Google Scholar 

  45. Feng, Q., et al.: A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52(4), 662–668 (2000)

    CAS  Google Scholar 

  46. Kim, J.S., et al.: Antimicrobial effects of silver nanoparticles. Nanomedicine 3(1), 95–101 (2007)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Natural Science Foundation of China, China (21677010). We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tang Xiaoning.

Ethics declarations

Conflict of interest

All author declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Gao, S., Zhang, B. et al. Electrospun Ag-Doped SnO2 Hollow Nanofibers with High Antibacterial Activity. Electron. Mater. Lett. 16, 195–206 (2020). https://doi.org/10.1007/s13391-020-00203-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-020-00203-6

Keywords

Navigation