Skip to main content
Log in

Tree Neighbourhood Diversity Has Negligible Effects on Drought Resilience of European Beech, Silver Fir and Norway Spruce

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Promoting tree species diversity is commonly advocated in the anticipation of predicted increases in drought frequency and severity. However, mixing effects on drought responses vary substantially with site conditions and species identity. We combined annually resolved tree-ring data and repeated forest inventory data spanning the last 90 years to examine the effect of species-specific neighbourhood competition on the drought response (resistance, recovery and resilience) of European beech (Fagus sylvatica), silver fir (Abies alba) and Norway spruce (Picea abies) for six drought events that occurred since the 1970s at three sites in Switzerland. We found predominantly weak neighbourhood competition and tree species diversity effects, with significant interspecific influences only for resistance and recovery of beech. These minor neighbourhood effects were outweighed by tree age and size effects. Although age effects depended on species identity and components of resilience, tree size consistently negatively affected all species. Our results emphasize that diversity effects may vary for each given species combination which makes broader conclusions challenging. This is because species interact through their specific set of traits and interactions vary in space and time. Adaptive management strategies are likely to be more effective when they promote more drought-tolerant species and reductions in stand density. Despite the absence of an unequivocal advantage of tree diversity on drought resilience, striving towards species-rich forests nonetheless allows for a risk spreading among multiple species and the reinforced provision of numerous ecosystem services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH (Ted., Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259:660–84.

  • Ammer C. 2018. Diversity and forest productivity in a changing climate. New Phytol. https://doi.org/10.1111/nph.15263

  • Ascoli D, Maringer J, Hacket-Pain A, Conedera M, Drobyshev I, Motta R, Cirolli M, Kantorowicz W, Zang C, Schueler S, Croisé L, Piussi P, Berretti R, Palaghianu C, Westergren M, Lageard JGA, Burkart A, Gehrig Bichsel R, Thomas PA, Beudert B, Övergaard R, Vacchiano G. 2017. Two centuries of masting data for European beech and Norway spruce across the European continent. Ecology.

  • Aussenac R, Bergeron Y, Gravel D, Drobyshev I. 2018. Interactions among trees: a key element in the stabilising effect of species diversity on forest growth. Funct Ecol. https://doi.org/10.1111/1365-2435.13257

  • Barton K. 2019. Package ‘MuMIn’. R Package Version 1(43):6.

    Google Scholar 

  • Bauhus J, Forrester DI, Gardiner B, Jactel H, Vallejo R, Pretzsch H. 2017. Ecological stability of mixed-species forests. In: Pretzsch H, Forrester D, Bauhus J, Eds. Mixed-Species Forests: Ecology and Management. Berlin : Springer.

    Google Scholar 

  • Bello J, Vallet P, Perot T, Balandier P, Seigner V, Perret S, Couteau C, Korboulewsky N. 2019. How do mixing tree species and stand density affect seasonal radial growth during drought events? For Ecol Manage 432:436–45.

    Google Scholar 

  • Bennett AC, Mcdowell NG, Allen CD, Anderson-Teixeira KJ. 2015. Larger trees suffer most during drought in forests worldwide. Nat Plants 1:1–5.

    Google Scholar 

  • Biondi F. 1999. Comparing tree-ring chronologies and repeated timber inventories as forest monitoring tools. Ecol Appl 9:216–27.

    Google Scholar 

  • Bosela M, Kulla L, Roessiger J, Šebeň V, Dobor L, Büntgen U, Lukac M. 2019. Long-term effects of environmental change and species diversity on tree radial growth in a mixed European forest. For Ecol Manage 446:293–303. https://linkinghub.elsevier.com/retrieve/pii/S0378112719304839

  • Bottero A, D’Amato AW, Palik BJ, Bradford JB, Fraver S, Battaglia MA, Asherin LA. 2017. Density-dependent vulnerability of forest ecosystems to drought. J Appl Ecol 54:1605–14.

    Google Scholar 

  • Brassard BW, Chen HYH, Bergeron Y, Paré D. 2011. Differences in fine root productivity between mixed- and single-species stands. Funct Ecol 25:238–46.

    Google Scholar 

  • Brienen RJW, Gloor E, Zuidema PA. 2012. Detecting evidence for CO 2 fertilization from tree ring studies: The potential role of sampling biases. Global Biogeochem Cycles.

  • Brinkmann N, Eugster W, Buchmann N, Kahmen A. 2018a. Species-specific differences in water uptake depth of mature temperate trees vary with water availability in the soil. Plant Biol 21:71–81.

    PubMed  Google Scholar 

  • Brinkmann N, Seeger S, Weiler M, Buchmann N, Eugster W, Kahmen A. 2018b. Employing stable isotopes to determine the residence times of soil water and the temporal origin of water taken up by Fagus sylvatica and Picea abies in a temperate forest. New Phytol 219:1300–13.

    CAS  PubMed  Google Scholar 

  • Brockerhoff EG, Barbaro L, Castagneyrol B, Forrester DI, Gardiner B, González-Olabarria JR, Lyver POB, Meurisse N, Oxbrough A, Taki H, Thompson ID, van der Plas F, Jactel H. 2017. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers Conserv 26:3005–35.

    Google Scholar 

  • Bunn AG. 2008. A dendrochronology program library in R (dplR). Dendrochronologia 26:115–24.

    Google Scholar 

  • Camarero JJ, Gazol A, Sangüesa-Barreda G, Oliva J, Vicente-Serrano SM. 2015. To die or not to die: Early warnings of tree dieback in response to a severe drought. J Ecol 103:44–57.

    CAS  Google Scholar 

  • CH2018. 2018. CH2018—Climate Scenarios for Switzerland. Zurich: Technical Report.

    Google Scholar 

  • Chamagne J, Tanadini M, Frank D, Matula R, Paine CET, Philipson CD, Svátek M, Turnbull LA, Volařík D, Hector A. 2017. Forest diversity promotes individual tree growth in central European forest stands. J Appl Ecol 54:71–9.

    Google Scholar 

  • Coll L, Ameztegui A, Collet C, Löf M, Mason B, Pach M, Verheyen K, Abrudan I, Barbati A, Barreiro S, Bielak K, Bravo-Oviedo A, Ferrari B, Govedar Z, Kulhavy J, Lazdina D, Metslaid M, Mohren F, Pereira M, Peric S, Rasztovits E, Short I, Spathelf P, Sterba H, Stojanovic D, Valsta L, Zlatanov T, Ponette Q. 2018. Knowledge gaps about mixed forests: What do European forest managers want to know and what answers can science provide? For Ecol Manage 407:106–15. https://doi.org/10.1016/j.foreco.2017.10.055.

    Article  Google Scholar 

  • Condés S, Sterba H, Aguirre A, Bielak K, Bravo-Oviedo A, Coll L, Pach M, Pretzsch H, Vallet P, del Río M. 2018. Estimation and uncertainty of the mixing effects on Scots Pine-European beech productivity from national forest inventories data. Forests 9.

  • del Río M, Pretzsch H, Ruíz-Peinado R, Ampoorter E, Annighöfer P, Barbeito I, Bielak K, Brazaitis G, Coll L, Drössler L, Fabrika M, Forrester DI, Heym M, Hurt V, Kurylyak V, Löf M, Lombardi F, Madrickiene E, Matović B, Mohren F, Motta R, den Ouden J, Pach M, Ponette Q, Schütze G, Skrzyszewski J, Sramek V, Sterba H, Stojanović D, Svoboda M, Zlatanov TM, Bravo-Oviedo A. 2017. Species interactions increase the temporal stability of community productivity in Pinus sylvestrisFagus sylvatica mixtures across Europe. J Ecol 105:1032–43.

    Google Scholar 

  • del Río M, Schütze G, Pretzsch H. 2014. Temporal variation of competition and facilitation in mixed species forests in Central Europe. Plant Biol 16:166–76.

    PubMed  Google Scholar 

  • Dietrich L, Zweifel R, Kahmen A. 2018. Daily stem diameter variations can predict the canopy water status of mature temperate trees. Tree Physiol 38:941–52.

    PubMed  Google Scholar 

  • Ding H, Pretzsch H, Schütze G, Rötzer T. 2017. Size-dependence of tree growth response to drought for Norway spruce and European beech individuals in monospecific and mixed-species stands. Plant Biol 19:709–19.

    CAS  PubMed  Google Scholar 

  • Duncan RP. 1989. An evaluation of errors in tree age estimates based on increment cores in Kahiketea (Dacrycarpus dacrydioides). New Zeal Nat Sci 16:31–7.

    Google Scholar 

  • Esper J, Niederer R, Bebi P, Frank D. 2008. Climate signal age effects-Evidence from young and old trees in the Swiss Engadin. For Ecol Manage 255:3783–9.

    Google Scholar 

  • Evans MEK, Falk DA, Arizpe A, Swetnam TL, Babst F, Holsinger KE. 2017. Fusing tree-ring and forest inventory data to infer influences on tree growth. Ecosphere 8.

  • Fichtner A, Härdtle W, Li Y, Bruelheide H, Kunz M, von Oheimb G. 2017. From competition to facilitation: how tree species respond to neighbourhood diversity. Ecol Lett 20:892–900.

    PubMed  Google Scholar 

  • Forrester D, Nitzsche J, Schmid H. 2019. The Experimental Forest Management project: An overview and methodology of the long-term growth and yield plot network. Birmensdorf: Swiss Federal Institute of Forest, Snow and Landscape Research WSL.

    Google Scholar 

  • Forrester DI. 2014. The spatial and temporal dynamics of species interactions in mixed-species forests: From pattern to process. For Ecol Manage 312:282–92. https://doi.org/10.1016/j.foreco.2013.10.003.

    Article  Google Scholar 

  • Forrester DI. 2019. Linking forest growth with stand structure: Tree size inequality, tree growth or resource partitioning and the asymmetry of competition. For Ecol Manage 447:139–57. https://doi.org/10.1016/j.foreco.2019.05.053.

    Article  Google Scholar 

  • Forrester DI, Bauhus J. 2016. A Review of Processes Behind Diversity—Productivity Relationships in Forests. Curr For Reports 2:45–61.

    Google Scholar 

  • Forrester DI, Bonal D, Dawud S, Gessler A, Granier A, Pollastrini M, Grossiord C. 2016. Drought responses by individual tree species are not often correlated with tree species diversity in European forests. J Appl Ecol 53:1725–34.

    CAS  Google Scholar 

  • Forrester DI, Kohnle U, Albrecht AT, Bauhus J. 2013. Complementarity in mixed-species stands of Abies alba and Picea abies varies with climate, site quality and stand density. For Ecol Manage 304:233–42. https://doi.org/10.1016/j.foreco.2013.04.038.

    Article  Google Scholar 

  • Fox J, Weisberg S. 2019. An R Companion to Applied Regression. Thousand Oaks CA Sage: Third Edition.

    Google Scholar 

  • Fritts HC. 2001. Tree Rings and Climate. Caldwell: Blackburn Press.

    Google Scholar 

  • Gamfeldt L, Snäll T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, Ruiz-Jaen MC, Fröberg M, Stendahl J, Philipson CD, Mikusiński G, Andersson E, Westerlund B, Andrén H, Moberg F, Moen J, Bengtsson J. 2013. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat Commun 4:1340.

    PubMed  PubMed Central  Google Scholar 

  • Gazol A, Camarero JJ. 2016. Functional diversity enhances silver fir growth resilience to an extreme drought. J Ecol 104:1063–75.

    Google Scholar 

  • Gazol A, Camarero JJ, Anderegg WRL, Vicente-Serrano SM. 2017. Impacts of droughts on the growth resilience of Northern Hemisphere forests. Glob Ecol Biogeogr 26:166–76.

    Google Scholar 

  • Gazol A, Camarero JJ, Gutiérrez E, Popa I, Andreu-Hayles L, Motta R, Nola P, Ribas M, Sangüesa-Barreda G, Urbinati C, Carrer M. 2015. Distinct effects of climate warming on populations of silver fir (Abies alba) across Europe. J Biogeogr 42:1150–62.

    Google Scholar 

  • Giuggiola A, Bugmann H, Zingg A, Dobbertin M, Rigling A. 2013. Reduction of stand density increases drought resistance in xeric Scots pine forests. For Ecol Manag 310:827–35. https://doi.org/10.1016/j.foreco.2013.09.030.

    Article  Google Scholar 

  • Grossiord C. 2018. Having the right neighbors: how tree species diversity modulates drought impacts on forests. New Phytol:0–2. https://doi.org/10.1111/nph.15667

  • Grossiord C, Granier A, Ratcliffe S, Bouriaud O, Bruelheide H, Checko E, Forrester DI, Dawud SM, Finer L, Pollastrini M, Scherer-Lorenzen M, Valladares F, Bonal D, Gessler A. 2014. Tree diversity does not always improve resistance of forest ecosystems to drought. Proc Natl Acad Sci 111:14812–5. https://doi.org/10.1073/pnas.1411970111

  • Hargreaves GH, Samani ZA. 1985. Reference crop evapotranspiration from temperature. Appl Eng Agric 1:96–9.

    Google Scholar 

  • Hartmann H. 2011. Will a 385 million year-struggle for light become a struggle for water and for carbon? How trees may cope with more frequent climate change-type drought events. Glob Chang Biol 17:642–55.

    Google Scholar 

  • Holmes RL. 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-ring Bull 43:69–78.

    Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmidt B, Setala H, Symstad AJ, Vandermeer J, Wardle DA. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35. https://doi.org/10.1890/04-0922

  • IPCC. 2018. Chapter 3: Impacts of 1.5°C global warming on natural and human systems. http://www.ipcc.ch/report/sr15/

  • Jactel H, Gritti ES, Drössler L, Forrester DI, Mason WL, Morin X, Pretzsch H, Castagneyrol B. 2018. Positive biodiversity–productivity relationships in forests: Climate matters. Biol Lett 14:12–15.

    Google Scholar 

  • Jones HG, Sutherland RA. 1991. Stomatal control of xylem embolism. Plant Cell Environ 14:607–12.

    Google Scholar 

  • Jourdan M, Kunstler G, Morin X. 2019. How neighbourhood interactions control the temporal stability and resilience to drought of trees in mountain forests. J Ecol.

  • Jucker T, Avăcăriei D, Bărnoaiea I, Duduman G, Bouriaud O, Coomes DA. 2016. Climate modulates the effects of tree diversity on forest productivity. J Ecol 104:388–98. https://doi.org/10.1111/1365-2745.12522

  • Jucker T, Bouriaud O, Avacaritei D, Coomes DA. 2014. Stabilizing effects of diversity on aboveground wood production in forest ecosystems: linking patterns and processes. Ecol Lett 17:1560–9. https://doi.org/10.1111/ele.12382

  • Kolář T, Čermák P, Trnka M, Žid T, Rybníček M. 2017. Temporal changes in the climate sensitivity of Norway spruce and European beech along an elevation gradient in Central Europe. Agric For Meteorol 239:24–33.

    Google Scholar 

  • Lebourgeois F, Gomez N, Pinto P, Mérian P. 2013. Mixed stands reduce Abies alba tree-ring sensitivity to summer drought in the Vosges mountains, western Europe. For Ecol Manage 303:61–71. https://doi.org/10.1016/j.foreco.2013.04.003.

    Article  Google Scholar 

  • Leuschner C, Ellenberg H. 2017. Ecology of Central European Forests.

  • Lévesque M, Rigling A, Bugmann H, Weber P, Brang P. 2014. Growth response of five co-occurring conifers to drought across a wide climatic gradient in Central Europe. Agric For Meteorol 197:1–12. https://doi.org/10.1016/j.agrformet.2014.06.001.

    Article  Google Scholar 

  • Lévesque M, Saurer M, Siegwolf R, Eilmann B, Brang P, Bugmann H, Rigling A. 2013. Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch. Glob Chang Biol 19:3184–99.

    PubMed  Google Scholar 

  • Lloret F, Keeling EG, Sala A. 2011. Components of tree resilience: Effects of successive low-growth episodes in old ponderosa pine forests. Oikos 120:1909–20.

    Google Scholar 

  • Loreau M, Hector A. 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–6.

    CAS  PubMed  Google Scholar 

  • Mencuccini M, Martínez-Vilalta J, Vanderklein D, Hamid HA, Korakaki E, Lee S, Michiels B. 2005. Size-mediated ageing reduces vigour in trees. Ecol Lett 8:1183–90.

    CAS  PubMed  Google Scholar 

  • Mérian P, Lebourgeois F. 2011. Size-mediated climate-growth relationships in temperate forests: A multi-species analysis. For Ecol Manage 261:1382–91.

    Google Scholar 

  • Metz J, Annighöfer P, Schall P, Zimmermann J, Kahl T, Schulze ED, Ammer C. 2016. Site-adapted admixed tree species reduce drought susceptibility of mature European beech. Glob Chang Biol 22:903–20.

    PubMed  Google Scholar 

  • Mina M, Huber MO, Forrester DI, Thürig E, Rohner B. 2018. Multiple factors modulate tree growth complementarity in Central European mixed forests. J Ecol 106:1106–19.

    Google Scholar 

  • Morin X, Fahse L, de Mazancourt C, Scherer-Lorenzen M, Bugmann H. 2014. Temporal stability in forest productivity increases with tree diversity due to asynchrony in species dynamics. Ecol Lett 17:1526–35.

    PubMed  Google Scholar 

  • Moritz S, Bartz-Beielstein T. 2017. imputeTS: Time Series Missing Value Imputation in R. R J 9:207.

    Google Scholar 

  • Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–42.

    Google Scholar 

  • Olson ME, Soriano D, Rosell JA, Anfodillo T, Donoghue MJ, Edwards EJ, León-Gómez C, Dawson T, Julio Camarero Martínez J, Castorena M, Echeverría A, Espinosa CI, Fajardo A, Gazol A, Isnard S, Lima RS, Marcati CR, Méndez-Alonzo R. 2018. Plant height and hydraulic vulnerability to drought and cold. Proc Natl Acad Sci U S A 115:7551–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pebesma E. 2018. Simple Features for R: Standardized Support for Spatial Vector Data. R J 10:439.

    Google Scholar 

  • Pinheiro J., Bates D, DebRoy S, Sarkar D, R Core Team. 2018. nlme: Linear and Nonlinear Mixed Effects Models. https://cran.r-project.org/package=nlme

  • Pretzsch H. 2013. Facilitation and competition in mixed-species forests analyzed along an ecological gradient. Nov Acta Leopoldina NF 114:159–74.

    Google Scholar 

  • Pretzsch H, Bielak K, Block J, Bruchwald A, Dieler J, Ehrhart HP, Kohnle U, Nagel J, Spellmann H, Zasada M, Zingg A. 2013a. Productivity of mixed versus pure stands of oak (Quercus petraea (Matt.) Liebl. and Quercus robur L.) and European beech (Fagus sylvatica L.) along an ecological gradient. Eur J For Res 132:263–80.

    Google Scholar 

  • Pretzsch H, Forrester DI, Bauhus J. 2017. Mixed-Species Forests Ecology and Management. Heidelberg: Springer. https://doi.org/10.1007/978-3-662-54553-9

  • Pretzsch H, del Río M, Ammer C, Avdagic A, Barbeito I, Bielak K, Brazaitis G, Coll L, Dirnberger G, Drössler L, Fabrika M, Forrester DI, Godvod K, Heym M, Hurt V, Kurylyak V, Löf M, Lombardi F, Matović B, Mohren F, Motta R, den Ouden J, Pach M, Ponette Q, Schütze G, Schweig J, Skrzyszewski J, Sramek V, Sterba H, Stojanović D, Svoboda M, Vanhellemont M, Verheyen K, Wellhausen K, Zlatanov T, Bravo-Oviedo A. 2015. Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe. Eur J For Res 134:927–47.

    Google Scholar 

  • Pretzsch H, Rötzer T, Matyssek R, Grams TEE, Häberle KH, Pritsch K, Kerner R, Munch JC. 2014. Mixed Norway spruce (Picea abies [L.] Karst) and European beech (Fagus sylvatica [L.]) stands under drought: from reaction pattern to mechanism. Trees 28:1305–21.

    CAS  Google Scholar 

  • Pretzsch H, Schütze G, Uhl E. 2013b. Resistance of European tree species to drought stress in mixed versus pure forests: Evidence of stress release by inter-specific facilitation. Plant Biol 15:483–95.

    CAS  PubMed  Google Scholar 

  • Primicia I, Camarero JJ, Janda P, Čada V, Morrissey RC, Trotsiuk V, Bače R, Teodosiu M, Svoboda M. 2015. Age, competition, disturbance and elevation effects on tree and stand growth response of primary Picea abies forest to climate. For Ecol Manage 354:77–86.

    Google Scholar 

  • R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria 0. https://www.r-project.org/

  • Ratcliffe S, Wirth C, Jucker T, van der Plas F, Scherer-Lorenzen M, Verheyen K, Allan E, Benavides R, Bruelheide H, Ohse B, Paquette A, Ampoorter E, Bastias CC, Bauhus J, Bonal D, Bouriaud O, Bussotti F, Carnol M, Castagneyrol B, Chećko E, Dawud SM, De Wandeler H, Domisch T, Finér L, Fischer M, Fotelli M, Gessler A, Granier A, Grossiord C, Guyot V, Haase J, Hättenschwiler S, Jactel H, Jaroszewicz B, Joly FX, Kambach S, Kolb S, Koricheva J, Liebersgesell M, Milligan H, Müller S, Muys B, Nguyen D, Nock C, Pollastrini M, Purschke O, Radoglou K, Raulund-Rasmussen K, Roger F, Ruiz-Benito P, Seidl R, Selvi F, Seiferling I, Stenlid J, Valladares F, Vesterdal L, Baeten L. 2017. Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecol Lett 20:1414–26.

    PubMed  Google Scholar 

  • Rigling A, Moser B, Feichtinger L, Gärtner H, Giuggiola A, Hug C, Wohlgemuth T. 2018. 20 Jahre Waldföhrensterben im Wallis: Rückblick und aktuelle Resultate. Schweizerische Zeitschrift fur Forstwes 169:242–50. https://doi.org/10.3188/szf.2018.0242

  • Rohner B, Weber P, Thürig E. 2016. Bridging tree rings and forest inventories: How climate effects on spruce and beech growth aggregate over time. For Ecol Manage 360:159–69.

    Google Scholar 

  • Rötzer T, Häberle KH, Kallenbach C, Matyssek R, Schütze G, Pretzsch H. 2017. Tree species and size drive water consumption of beech/spruce forests - a simulation study highlighting growth under water limitation. Plant Soil 418:337–56.

    Google Scholar 

  • Rozas V, DeSoto L, Olano JM. 2009. Blackwell Publishing Ltd Sex-specific, age-dependent sensitivity of tree-ring growth to climate in the dioecious tree Juniperus thurifera. New Phytol 182:687–97.

    PubMed  Google Scholar 

  • Sánchez-Salguero R, Camarero JJ, Carrer M, Gutiérrez E, Alla AQ, Andreu-Hayles L, Hevia A, Koutavas A, Martínez-Sancho E, Nola P, Papadopoulos A, Pasho E, Toromani E, Carreira JA, Linares JC. 2017. Climate extremes and predicted warming threaten Mediterranean Holocene firs forests refugia. Proc Natl Acad Sci U S A 114:E10142–50.

    PubMed  PubMed Central  Google Scholar 

  • Schäfer C, Grams TEE, Rötzer T, Feldermann A, Pretzsch H. 2017. Drought stress reaction of growth and δ13C in tree rings of European beech and Norway spruce in monospecific versus mixed stands along a precipitation gradient. Forests 8:177.

    Google Scholar 

  • Schuler LJ, Bugmann H, Snell RS. 2017. From monocultures to mixed-species forests: is tree diversity key for providing ecosystem services at the landscape scale? Landsc Ecol 32:1499–516.

    Google Scholar 

  • Schwarz JA, Bauhus J. 2019. Benefits of Mixtures on Growth Performance of Silver Fir (Abies alba) and European Beech (Fagus sylvatica) Increase With Tree Size Without Reducing Drought Tolerance.

  • Shannon CE, Weaver W. 1948. A Mathematical Theory of Communication. Bell Syst Tech J 27:623–56.

    Google Scholar 

  • Sohn JA, Saha S, Bauhus J. 2016. Potential of forest thinning to mitigate drought stress: A meta-analysis. For Ecol Manage 380:261–73. https://doi.org/10.1016/j.foreco.2016.07.046.

    Article  Google Scholar 

  • Speer JH. 2009. Fundamentals of tree-ring research.

  • Spinoni J, Vogt JV, Naumann G, Barbosa P, Dosio A. 2018. Will drought events become more frequent and severe in Europe? Int J Climatol 38:1718–36.

    Google Scholar 

  • Stokes A, Norris JE. 2007. Eco-and Ground Bio-Engineering: The Use of Vegetation to Improve Slope Stability.

  • Teets A, Fraver S, Weiskittel AR, Hollinger DY. 2018. Quantifying climate–growth relationships at the stand level in a mature mixed-species conifer forest. Glob Chang Biol.

  • Thornton PE, Running SW, White MA. 1997. Generating surfaces of daily meteorological variables over large regions of complex terrain. J Hydrol 190:214–51.

    Google Scholar 

  • Thurm EA, Uhl E, Pretzsch H. 2016. Mixture reduces climate sensitivity of Douglas-fir stem growth. For Ecol Manage 376:205–20. https://doi.org/10.1016/j.foreco.2016.06.020.

    Article  Google Scholar 

  • Tinner W, Colombaroli D, Heiri O, Henne PD, Steinacher M, Untenecker J, Vescovi E, Allen JRM, Carraro G, Conedera M, Joos F, Lotter AF, Luterbacher J, Samartin S, Valsecchi V. 2013. The past ecology of Abies alba provides new perspectives on future responses of silver fir forests to global warming. Ecol Monogr 83:419–39.

    Google Scholar 

  • Tobner CM, Paquette A, Gravel D, Reich PB, Williams LJ, Messier C. 2016. Functional identity is the main driver of diversity effects in young tree communities. Ecol Lett 19:638–47.

    PubMed  Google Scholar 

  • Toïgo M, Vallet P, Perot T, Bontemps JD, Piedallu C, Courbaud B. 2015. Overyielding in mixed forests decreases with site productivity. J Ecol 103:502–12.

    Google Scholar 

  • Trenberth KE, Dai A, Van Der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J. 2014. Global warming and changes in drought. Nat Clim Chang 4:17–22.

    Google Scholar 

  • Vanhellemont M, Sousa-Silva R, Maes SL, Van den Bulcke J, Hertzog L, De Groote SRE, Van Acker J, Bonte D, Martel A, Lens L, Verheyen K. 2019. Distinct growth responses to drought for oak and beech in temperate mixed forests. Sci Total Environ 650:3017–26. https://www.sciencedirect.com/science/article/pii/S0048969718339275?via%3Dihub

  • Vicente-Serrano SM, Beguería S, López-Moreno JI. 2010. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J Clim 23:1696–718.

    Google Scholar 

  • Vilà M, Carrillo-Gavilán A, Vayreda J, Bugmann H, Fridman J, Grodzki W, Haase J, Kunstler G, Schelhaas MJ, Trasobares A. 2013. Disentangling Biodiversity and Climatic Determinants of Wood Production. PLoS One 8.

  • Vitali V, Büntgen U, Bauhus J. 2017. Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany. Glob Chang Biol 23:5108–19.

    PubMed  Google Scholar 

  • Vitali V, Forrester DI, Bauhus J. 2018. Know Your Neighbours: Drought Response of Norway Spruce, Silver Fir and Douglas Fir in Mixed Forests Depends on Species Identity and Diversity of Tree Neighbourhoods. Ecosystems 21:1215–29.

    Google Scholar 

  • Vitasse Y, Bottero A, Cailleret M, Bigler C, Fonti P, Gessler A, Lévesque M, Rohner B, Weber P, Rigling A, Wohlgemuth T. 2019a. Contrasting resistance and resilience to extreme drought and late spring frost in five major European tree species. Glob Chang Biol 25:3781–92.

    PubMed  Google Scholar 

  • Vitasse Y, Bottero A, Rebetez M, Conedera M, Augustin S, Brang P, Tinner W. 2019b. What is the potential of silver fir to thrive under warmer and drier climate? Eur J For Res. https://doi.org/10.1007/s10342-019-01192-4.

    Article  Google Scholar 

  • Weber P, Bugmann H, Fonti P, Rigling A. 2008. Using a retrospective dynamic competition index to reconstruct forest succession. For Ecol Manage 254:96–106.

    Google Scholar 

  • Yachi S, Loreau ML. 1999. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc Natl Acad Sci 96:1463–8.

    CAS  PubMed  Google Scholar 

  • Yoder BJ, Ryan MG, Waring RH, Schoettle AW, Kaufmann MR. 1994. Evidence of reduced photosynthetic rates in old trees. For Sci.

  • Zang C, Biondi F. 2015. Treeclim: An R package for the numerical calibration of proxy-climate relationships. Ecography (Cop) 38:431–6.

    Google Scholar 

  • Zang C, Hartl-Meier C, Dittmar C, Rothe A, Menzel A. 2014. Patterns of drought tolerance in major European temperate forest trees: Climatic drivers and levels of variability. Glob Chang Biol 20:3767–79.

    PubMed  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, A. SA, Smith GM. (2009). Mixed Effects Models and Extensions in Ecology with R. Springer Science & Business Media. http://arxiv.org/abs/1305.6995

Download references

Acknowledgements

We thank Cla Bischoff and Justine Charlet de Sauvage for their valuable assistance in the field, Christof Bigler for statistical advices, Magdalena Nötzli for help with tree-ring measurement and Gunnar Petter for retrieving the climate data. Thanks to the foresters for granting the permission to core trees in forests under their management. We also thank the two anonymous reviewers for their constructive comments which significantly improved our manuscript.

Data availability

The EFM data are available upon request from David Forrester and the tree-ring data from Mathieu Lévesque.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loïc Gillerot.

Additional information

LG, ML and DIF conceived the project outline, hypotheses and methodology. DIF provided access to sampling sites and their related data. LG and ML carried out the fieldwork and tree-ring measuring. LG ran the statistical analyses. LG, DIF, AB, AR and ML contributed to the interpretation and discussion of results. LG lead the manuscript writing and ML supervised the project.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1350 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gillerot, L., Forrester, D.I., Bottero, A. et al. Tree Neighbourhood Diversity Has Negligible Effects on Drought Resilience of European Beech, Silver Fir and Norway Spruce. Ecosystems 24, 20–36 (2021). https://doi.org/10.1007/s10021-020-00501-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-020-00501-y

Keywords

Navigation