Skip to main content
Log in

Upper mantle seismic anisotropy beneath the Kachchh rift zone, Gujarat, India, from shear wave splitting analysis

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Unravelling the anisotropic behaviour of the upper mantle helps to shed light on its present and past deformation processes. In this study, we attempt to explore the seismic anisotropy prevailing within the upper mantle beneath the Kachchh rift zone through shear wave splitting analysis. We have measured the splitting parameters (e.g., fast axis orientation (\( \varPhi \)) and delay time (\( \delta t \))) using SKS/SKKS core refracted phases from 112 teleseismic events recorded at NGRI network in the Kachchh region, during 2006–2009 and 2013–2016. The ‘\( \varPhi \)’ and ‘\( \delta t \)’ estimates vary from N34° to N73°E and 0.80 to 1.5 s, respectively. The average vector means of ‘\( \varPhi \)’ and ‘\( \delta t \)’ for all the stations are found to be \( {\text{N}}\left( {58 \pm 10} \right) \)°E and (0.99 ± 0.19) s, respectively. Measurements of 59 good SKS/SKKS splitting parameters from 112 earthquakes reveal that the upper mantle is highly anisotropic beneath the Kachchh rift zone with an average fast axis orientation of \( {\text{N}}\left( {58 \pm 10} \right) \)°E, which is deviated nearly \( (\sim{\text{N}}18 \)°E) from the absolute plate motion (APM) direction (~N40°E) of the Indian plate in a no-net-rotation reference frame. This deviation of fast axis orientation from APM direction may be attributed to the effect of Kachchh rift zone as well as the presence of structural imprints of the 65 Ma Deccan mantle plume in the study region. And the average delay time of (0.99 ± 0.19) s is consistent with the global average (1 s) for continents. Furthermore, the modelled seismic layer thicknesses reveal that anisotropic sources beneath study region are associated with both the lithospheric deformation processes (e.g., 184 Ma African rifting, 88 Ma Madagascar rifting, 65 Ma Deccan mantle plume) as well as asthenospheric flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Ando M, Ishikawa Y and Yamazaki F 1983 Shear wave polarization anisotropy in the upper mantle beneath Honshu, Japan; J. Geophys. Res. 88 5850–5864.

    Google Scholar 

  • Barruol G and Hoffmann R 1999 Upper mantle seismic anisotropy beneath the geoscope stations; J. Geophys. Res. 104 10,757–10,773.

    Google Scholar 

  • Biswas S K 1987 Regional tectonic framework, structure, and evolution of the marginal western basins of India; Tectonophys. 135 307–327.

    Google Scholar 

  • Biswas S K 2005 A review of structure and tectonics of Kutch basin, western India, with special reference to earthquakes; Curr. Sci. 88 1592–1600.

    Google Scholar 

  • BIS 2002 IS 1893 (Part I) 2002 Indian Standard Criteria for Earthquake Resistant Design of Structures. Part I: General Provisions and Buildings; Bureau of Indian Standards, New Delhi.

    Google Scholar 

  • Bodin P and Horton S 2004 Source parameters and tectonic implications of aftershocks of the Mw 7.6 Bhuj earthquake of 26 January 2001; Bull. Geol. Soc. Am. 94 818–827.

    Google Scholar 

  • Booth D C and Crampin S 1985 Shear-wave polarization on a curved wavefront at anisotropic free surface; Geophys. J. R. Astr. Soc. 83 31–45.

    Google Scholar 

  • Bowman J R and Ando M 1987 Shear-wave splitting in the upper-mantle wedge above the Tonga subduction zone; Geophys. J. Int. 88 25–41.

    Google Scholar 

  • Chevrot S 2000 Multichannel analysis of shear wave splitting; J. Geophys. Res. 105 21,579–21,590.

    Google Scholar 

  • Crampin S and Chastin S 2003 A review of shear-wave splitting in the crack-critical crust; Geophys. J. Int. 155 221–240.

    Google Scholar 

  • Courtillot V, Jaupart C, Manighetti I, Tapponnier P and Besse J 1999 On causal links between flood basalts and continental breakup; Earth Planet. Sci. Lett. 166 177–195.

    Google Scholar 

  • Currie C A, Cassidy J F, Hyndman R and Bostock M G 2004 Shear wave anisotropy beneath the Cascadia subduction zone and western North American craton; Geophys. J. Int. 157 341–353.

    Google Scholar 

  • Dalziel I W D, Lawver L A and Murphy J B 2000 Plumes, orogenesis, and supercontinental fragmentation; Earth Planet. Sci. Lett. 178 1–11.

    Google Scholar 

  • DeMets C, Gordon R G, Argus D F and Stein S 1994 Effect of recent revisions to the geomagnetic reversal time scale on estimate of current plate motions; Geophys. Res. Lett. 21 2191–2194.

    Google Scholar 

  • Fouch M J and Rondenay S 2006 Seismic anisotropy beneath stable continental interiors; Phys. Earth Planet. Int. 158 292–320.

    Google Scholar 

  • Fukao Y 1984 Evidence from core-reflected shear waves for anisotropy in the earth’s mantle; Nature 309 695–698.

    Google Scholar 

  • Gao S, Davis P M, Liu H, Slack P D, Zorin Y A, Mordvinova V V, Kozhevnikov V M and Meyer R P 1994 Seismic anisotropy and mantle flow beneath the Baikal rift zone; Nature 371 149–151.

    Google Scholar 

  • Gao S, Davis P M, Liu H, Slack P D, Rigor A W, Zorin Y A, Mordvinova V V, Kozhevnikov V M and Logatchev N A 1997 SKS splitting beneath continental rift zones; J. Geophys. Res. 102 22,781–22,797.

    Google Scholar 

  • Gupta H K, Rao N P, Rastogi B K and Sarkar D 2001 Bhuj earthquake of 26 January 2001; J. Geol. Soc. India 57 275–278, http://tharinarayana.net/index_files/pub2/Gsi01.pdf.

  • Heintz M and Kennett B L N 2006 Continental scale shear wave splitting analysis: Investigation of seismic anisotropy underneath the Australian continent; Earth Planet. Sci. Lett. 236 106–119.

    Google Scholar 

  • Karmalkar N R, Rege S, Griffin W L and O’Reilly S Y 2005 Alkaline magmatism from Kutch, NW India: Implications for plume–lithosphere interaction; Lithos 81 107–119; https://doi.org/10.1016/j.lithos.2004.09.019.

    Article  Google Scholar 

  • Keith C M and Crampin S 1977 Seismic body waves in anisotropic media: Synthetic seismograms; Geophys. J. R. Astr. Soc. 49 225–243.

    Google Scholar 

  • Kendall J M, Pilidou S, Keir D, Bastow I D, Stuart G W and Ayele A 2006 Mantle upwellings, melt migration and the rifting of Africa: Insights from seismic anisotropy; Geol. Soc. London, Spec. Publ. 259 55–72.

    Google Scholar 

  • Kennett B and Widiyantoro S 1999 A low seismic wavespeed anomaly beneath northwestern India: A seismic signature of the Deccan plume? Earth Planet. Sci. Lett. 165 145–155.

    Google Scholar 

  • Kosarev G L, Makeyeva L I and Vinnik L 1984 Anisotropy of the mantle inferred from observations of P to S converted waves; Geophys. J. R. Astr. Soc. 76 209–222.

    Google Scholar 

  • Kumar M R and Singh A 2008 Evidence for plate motion related strain in the Indian shieldfrom shear wave splitting measurements; J. Geophys. Res. 113 B08306, https://doi.org/10.1029/2007JB005128.

    Article  Google Scholar 

  • Levin V, Menke W and Park J 1999 Shear wave splitting in the Appalachians and the Urals: A case for multilayered anisotropy; J. Geophys. Res. 104 17,975–17,993.

    Google Scholar 

  • Mandal P 2011a Crustal and lithospheric thinning beneath the seismogenic Kachchh rift zone, Gujarat (India): Its implications towards the generation of the 2001 Bhuj earthquake sequences; J. Asian Earth Sci. 40 150–161.

    Google Scholar 

  • Mandal P 2011b Upper mantle seismic anisotropy in the intra-continental Kachchh rift zone, Gujarat, India; Tectonophys. 509 81–92.

    Google Scholar 

  • Mandal P 2019a A possible origin of intraplate earthquakes in the Kachchh rift zone, India, since the 2001 Mw 7.7 Bhuj earthquake; J. Asian Earth Sci. 170 56–72.

    Google Scholar 

  • Mandal P 2019b Shear wave splitting in Rajasthan craton, India; J. Asian Earth Sci. 173 1–10.

    Google Scholar 

  • Mandal P 2019c P-wave teleseismic tomography: Evidence of imprints of Deccan Mantle Plume below the Kachchh Rift Zone, Gujarat, India; https://doi.org/10.5772/intechopen.83738.

    Article  Google Scholar 

  • Mandal P, Satyamurty C and Raju I P 2009 Iterative de-convolution of the local waveforms: Characterization of the seismic sources in Kachchh, India; Tectonophys. 478 143–157.

    Google Scholar 

  • Mandal P and Horton S 2007 Relocation of aftershocks, focal mechanisms and stress Inversion: Implications towards the seismo-tectonics of the causative fault zone of Mw 7.6 2001 Bhuj earthquake (India); Tectonophys. 429 61–78.

  • Mandal P and Rastogi B K 2005 Self-organized fractal seismicity and b value of aftershocks of the 2001 Bhuj earthquake in Kutch (India); Pure Appl. Geophys. 162 53–72.

    Google Scholar 

  • Mainprice D, Barruol G and Ben I W 2000 The seismic anisotropy of the Earth’s mantle: From single crystal to polycrystal; In: Earth’s deep interior: Mineral Physics and Tomography from the atomic to the global scale (eds) Karato S I, Forte A, Liebermann R C, Masters G and Stixrude L, Geophysical Monograph, AGU, Washington, pp. 237264, https://doi.org/10.1029/GM117p0237.

  • Meade C, Silver P G and Kaneshima S 1995 Laboratory and seismological observations of lower mantle isotropy; Geophys. Res. Lett. 22 1293–1296.

    Google Scholar 

  • Naqvi S M, Divakararao V and Narain H 1974 The protocontinental growth of the Indian Shield and the antiquity of its rift valleys; Precamb. Res. 1 345–398.

    Google Scholar 

  • Nicolas A and Christensen N I 1987 Formation of anisotropy in upper mantle peridotites A review; In: Composition, Structure and Dynamics of the Lithosphere–Asthenosphere System (eds) Fuchs K and Froidevaux C, Geodynamic Series AGU, Washington, pp. 111–123, https://doi.org/10.1029/GD016p0111.

  • Niu F and Perez A M 2004 Seismic anisotropy in the lower mantle: A comparison of waveform splitting of SKS and SKKS; Geophys. Res. Lett. 31, https://doi.org/10.1029/2004GL0211196.

  • Radhakrishna B P and Naqvi S M 1986 Precambrian continental crust of India and its evolution; J. Geol. 94 145–166.

    Google Scholar 

  • Rao M K, Ravi K M, Singh A and Rastogi B K 2013 Two distinct shear wave splitting directions in the northwestern Deccan volcanic province; J. Geophys. Res. 118 5487–5499.

    Google Scholar 

  • Rastogi B K 2001 Ground deformation study of Mw 7.7 Bhuj earthquake of 2001; Episodes 24 160–165, https://scholar.google.com/scholar?cluster=13823457074749751154&hl=en&as_sdt=2005&sciodt=0,5.

  • Rastogi B K, Mandal P and Biswas S K 2014 Seismogenesis of earthquakes occurring in the ancient rift basin of Kachchh, Western India; Cambridge University Press, Cambridge, pp. 126–161, https://doi.org/10.1017/CBO9781139628921.007.

  • Rastogi B K, Kayal J R and Harinarayana T 2013a Introduction to the special volume on Bhuj earthquake; Nat. Hazards 65 1023–1025.

    Google Scholar 

  • Rastogi B K, Aggrawal S K, Rao N and Choudhury P 2013b Triggered/migrated seismicity due to the 2001 Mw 7.7 Bhuj earthquake, western India; Nat. Hazards 65 1085–1107.

    Google Scholar 

  • Raval U and Veeraswamy K 2003 IndiaMadagascar separation: Break along a pre-existing mobile belt and chipping of the craton; Gondwana Res. 3 467–485.

  • Restivo A and Helffrich G 1999 Teleseismic shear wave splitting measurements in noisy environments; Geophys. J. Int. 137 821–830.

    Google Scholar 

  • Restivo A and Helffrich G 2006 Core-mantle boundary structure investigated using SKS and SKKS polarization anomalies; Geophys. J. Int. 165 288–302.

    Google Scholar 

  • Savage M K 1999 Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Rev. Geophys. 37 65–106.

    Google Scholar 

  • Seismic Analysis Code 2000 http://www.iris.edu/manuals/sac/SAC_Home_Main.html, 280p.

  • Silver P G 1996 Seismic anisotropy beneath the continents: Probing the depths of geology; Ann. Rev. Earth Planet. Sci. 24 385–432.

    Google Scholar 

  • Silver P G and Chan W W 1988 Implications for continental structure and evolution from seismic anisotropy; Nature 335 34–39.

    Google Scholar 

  • Silver P G and Chan W W 1991 Shear wave splitting and sub-continental mantle deformation; J. Geophys. Res. 96 16,429–16,454.

    Google Scholar 

  • Singh B and Mandal P 2018 Moment tensor solutions of some selected local events: Implications towards the present-day tectonics of the Kachchh Rift zone; J. Geol. Soc. India 91 158–164.

    Google Scholar 

  • Storey B C 1995 The role of mantle plumes in continental breakup: Case histories from Gondwanaland; Nature 377 301–308.

    Google Scholar 

  • Tommasi A 1998 Forward modelling of the development of seismic anisotropy in the upper mantle; Earth Planet. Sci. Lett. 160 1–13.

    Google Scholar 

  • Tommasi A and Vauchez A 2001 Continental rifting parallel to ancient collisional belts: An effect of the mechanical anisotropy of the lithospheric mantle; Earth Planet. Sci. Lett. 185 199–210.

    Google Scholar 

  • Vauchez A, Neves S, Caby R, Corsini M, Egydio-Silva M, Arthaud M and Amaro V 1995 The Borborema shear zone system, NE Brazil; J. S. Am. Earth Sci. 8 247–266.

    Google Scholar 

  • Vinnik L P, Kosarev G L and Makeyeva L I 1984a Anisotropiya litosfery po nablyudeniyam voln SKS and SKKS; Dokl. Akad. Nauk USSR 278 1335–1339.

    Google Scholar 

  • Vinnik L P, Kosarev G L and Makeyeva L I 1984b Lithospheric anisotropy as indicated by SKS and SKKS waves; Doklady Earth Sci. Sect. 278 39–43.

    Google Scholar 

  • Vinnik L P, Makeyeva L I, Milev A and Usenko A Y 1992 Global patterns of azimuthal anisotropy and deformations in the continental mantle; Geophys. J. Int. 111 433–437.

    Google Scholar 

  • Walker K T, Bokelmann G H R, Klemperer S L and Bock G 2005a Shear-wave splitting around the Eifel hotspot: Evidence for a mantle upwelling; Geophys. J. Int. 163 962–980.

    Google Scholar 

  • Walker K T, Bokelmann G H R, Klemperer S L and Nyblade A 2005b Shear-wave splitting around hotspots: Evidence for upwelling-related mantle flow; Geol. Soc. Am. 388 171–192.

    Google Scholar 

  • White R and McKenzie D 1989 Magmatism at rift zones: The generation of volcanic continental margins and flood basalts; J. Geophys. Res. 94 7685–7729.

    Google Scholar 

  • Wustefeld A and Bokelmann G 2007 Null detection in shear-wave splitting measurements; Bull. Seismol. Soc. Am. 97 1204–1211.

    Google Scholar 

  • Wustefeld A, Bokelmann G, Barruol G and Zaroli C 2008 Splitlab: A shear-wave splitting environment in Matlab; Comput. Geosci. 34 515–528.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, Council of Scientific and Industrial Research–National Geophysical Research Institute (CSIR-NGRI), Hyderabad, India, for his kind permission to publish this work. This study is supported by the Ministry of Earth Sciences (MoES), Delhi, India. This study is also supported by the Council of Scientific and Industrial Research (CSIR) 12 Five-Year-Plan Project (Heart) at the CSIR-NGRI, Hyderabad. BS is thankful to CSIR for providing a Senior Research Fellow (SRF) Fellowship for conducting this research at the Academy of Scientific and Innovative Research (AcSIR) – NGRI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhoopendra Singh.

Additional information

Communicated by N V Chalapathi Rao

Corresponding editor: N V Chalapathi Rao

Supplementary materials pertaining to this article are available on the Journal of Earth Science Website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3013 kb)

Appendix

Appendix

See Supplementary material (table A1 and figures A1–10).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B., Mandal, P. Upper mantle seismic anisotropy beneath the Kachchh rift zone, Gujarat, India, from shear wave splitting analysis. J Earth Syst Sci 129, 110 (2020). https://doi.org/10.1007/s12040-020-1373-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-020-1373-5

Keywords

Navigation