Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Crystal polymorphism of polylactide and its composites by X-ray diffraction study

Subjects

Abstract

Polylactide (PLA) exhibits various types of crystal modifications depending on the preparation conditions, including the components. To solve the open question, a reliable calculation method for crystallinity, crystal forms, and composition in neat PLA and PLA composites was developed on the basis of temperature-dependent synchrotron wide-angle X-ray diffraction results. The relative composition of amorphous, α-form, and α’-form phases of PLA and its composites filled with halloysite nanotubes during heating was successfully obtained. It was found that only 47–56% of α’-form crystals transform into α-form crystals during a 2 °C/min heating process for PLA with a molecular weight of 54,300 g/mol. The loading of halloysite nanotubes decreases the cold crystallization and starting transition (α’ crystals transform into α-form crystals) temperatures of PLA. The crystallinity and the main diffraction peak intensity as a function of temperature were also analyzed. These results suggest that the α’-to-α form transition is a solid-solid phase transition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pan P, Inoue Y. Polymorphism and isomorphism in biodegradable polyesters. Prog Polym Sci. 2009;34:605–40.

    Article  CAS  Google Scholar 

  2. Saeidlou S, Huneault MA, Li H, Park CB. Poly(lactic acid) crystallization. Prog Polym Sci. 2012;37:1657–77.

    Article  CAS  Google Scholar 

  3. Di Lorenzo ML, Rubino P, Luijkx R, Hélou M. Influence of chain structure on crystal polymorphism of poly(lactic acid). Part 1: effect of optical purity of the monomer. Colloid Polym Sci. 2014;292:399–409.

    Article  CAS  Google Scholar 

  4. Zhang J, Duan Y, Sato H, Tsuji H, Noda I, Yan S, et al. Crystal modifications and thermal behavior of poly(L-lactic acid) revealed by infrared spectroscopy. Macromolecules. 2005;38:8012–21.

    Article  CAS  Google Scholar 

  5. Ling X, Spruiell JE. Analysis of the complex thermal behavior of poly(L-lactic acid) film. II. Samples crystallized from the melt. J Polym Sci Part B: Polym Phys. 2006;44:3378–91.

    Article  CAS  Google Scholar 

  6. Yasuniwa M, Tsubakihara S, Iura K, Ono Y, Dan Y, Takahashi K. Crystallization behavior of poly(L-lactic acid). Polymer. 2006;47:7554–63.

    Article  CAS  Google Scholar 

  7. He Y, Fan Z, Hu Y, Wu T, Wei J, Li S. DSC analysis of isothermal melt-crystallization, glass transition and melting behavior of poly(L-lactide) with different molecular weights. Eur Polym J. 2007;43:4431–9.

    Article  CAS  Google Scholar 

  8. Kawai T, Rahman N, Matsuba G, Nishida K, Kanaya T, Nakano M, et al. Crystallization and melting behavior of poly(L-lactic acid). Macromolecules. 2007;40:9463–9.

    Article  CAS  Google Scholar 

  9. Pan P, Kai W, Zhu B, Dong T, Inoue Y. Polymorphous crystallization and multiple melting behavior of poly(L-lactide): molecular weight dependence. Macromolecules. 2007;40:6898–905.

    Article  CAS  Google Scholar 

  10. Pan P, Zhu B, Kai W, Dong T, Inoue Y. Effect of crystallization temperature on crystal modifications and crystallization kinetics of poly(L-lactide). J Appl Polym Sci. 2008;107:54–62.

    Article  CAS  Google Scholar 

  11. Zhang J, Tashiro K, Tsuji H, Domb AJ. Disorder-to-order phase transition and multiple melting behavior of poly(L-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules. 2008;41:1352–7.

    Article  CAS  Google Scholar 

  12. Marubayashi H, Akaishi S, Akasaka S, Asai S, Sumita M. Crystalline structure and morphology of poly(L-lactide) formed under high-pressure CO2. Macromolecules. 2008;41:9192–203.

    Article  CAS  Google Scholar 

  13. Pan P, Zhu B, Kai W, Dong T, Inoue Y. Polymorphic transition in disordered poly(L-lactide) crystals induced by annealing at elevated temperatures. Macromolecules. 2008;41:4296–304.

    Article  CAS  Google Scholar 

  14. Yasuniwa M, Sakamo K, Ono Y, Kawahara W. Melting behavior of poly(L-lactic acid): X-ray and DSC analyses of the melting process. Polymer. 2008;49:1943–51.

    Article  CAS  Google Scholar 

  15. Cocca M, Di Lorenzo ML, Malinconico M, Frezza V. Influence of crystal polymorphism on mechanical and barrier properties of poly(L-lactic acid). Eur Polym J. 2011;47:1073–80.

    Article  CAS  Google Scholar 

  16. Wasanasuk K, Tashiro K. Structural regularization in the crystallization process from the glass or melt of poly(L-lactic acid) viewed from the temperature-dependent and time-resolved measurements of FTIR and wide-angle/small-angle X-ray scatterings. Macromolecules. 2011;44:9650–60.

    Article  CAS  Google Scholar 

  17. Wasanasuk K, Tashiro K. Crystal structure and disorder in poly(L-lactic acid) δ form (α’ form) and the phase transition mechanism to the ordered α form. Polymer. 2011;52:6097–109.

    Article  CAS  Google Scholar 

  18. Di Lorenzo ML, Cocca M, Malinconico M. Crystal polymorphism of poly(L-lactic acid) and its influence on thermal properties. Thermochim Acta. 2011;522:110–7.

    Article  CAS  Google Scholar 

  19. Pan P, Yang J, Shan G, Bao Y, Weng Z, Cao A, et al. Temperature-variable FTIR and solid-state 13C NMR investigations on crystalline structure and molecular dynamics of polymorphic poly(L-lactide) and poly(L-lactide)/poly(D-lactide) stereocomplex. Macromolecules. 2012;45:189–97.

    Article  CAS  Google Scholar 

  20. Marubayashi H, Asai S, Sumita M. Complex crystal formation of poly(L-lactide) with solvent molecules. Macromolecules. 2012;45:1384–97.

    Article  CAS  Google Scholar 

  21. Chen X, Han L, Zhang T, Zhang J. Influence of crystal polymorphism on crystallinity calculation of poly(L-lactic acid) by infrared spectroscopy. Vib Spectrosc. 2014;70:1–5.

    Article  CAS  Google Scholar 

  22. Di Lorenzo ML, Rubino P, Immirzi B, Luijkx R, Hélou M, Androsch R. Influence of chain structure on crystal polymorphism of poly(lactic acid). Part 2. Effect of molecular mass on the crystal growth rate and semicrystalline morphology. Colloid Polym Sci. 2015;293:2459–67.

    Article  CAS  Google Scholar 

  23. Jariyasakoolroj P, Tashiro K, Wang H, Yamamoto H, Chinsirikul W, Kerddonfag N, et al. Isotropically small crystalline lamellae induced by high biaxial-stretching rate as a key microstructure for super-tough polylactide film. Polymer. 2015;68:234–45.

    Article  CAS  Google Scholar 

  24. Shaiju P, Murthy NS, Gowd EB. Molecular, crystalline, and lamellar length-scale changes in the poly(L-lactide) (PLLA) during cyclopentanone (CPO) desorption in PLLA/CPO cocrystals. Macromolecules. 2016;49:224–33.

    Article  CAS  Google Scholar 

  25. Zhang J, Duan Y, Domb AJ, Ozaki Y. PLLA mesophase and its phase transition behavior in the PLLA-PEG-PLLA copolymer as revealed by infrared spectroscopy. Macromolecules. 2010;43:4240–6.

    Article  CAS  Google Scholar 

  26. Eling B, Gogolewski S, Pennings AJ. Biodegradable materials of poly(L-lactic acid): 1. Melt-spun and solution-spun fibers. Polymer. 1982;23:1587–93.

    Article  CAS  Google Scholar 

  27. Puiggali J, Ikada Y, Tsuji H, Cartier L, Okihara T, Lotz B. The frustrated structure of poly(L-lactide). Polymer. 2000;41:8921–30.

    Article  CAS  Google Scholar 

  28. Sawai D, Takahashi K, Imamura T, Nakamura K, Kanomoto T, Hyon SH. Preparation of oriented β-form poly(L-lactic acid) by solid-state extrusion. J Polym Sci Part B: Polym Phys. 2002;40:95–104.

    Article  CAS  Google Scholar 

  29. Sawai D, Takahashi K, Sasashige A, Kanamoto T. Preparation of oriented β-form poly(L-lactic acid) by solid-state coextrusion: Effect of extrusion variables. Macromolecules. 2003;36:3601–5.

    Article  CAS  Google Scholar 

  30. Cartier L, Okihara T, Ikada Y, Tsuji H, Puiggali J, Lotz B. Epitaxial crystallization and crystalline polymorphism of polylactides. Polymer. 2000;41:8909–19.

    Article  CAS  Google Scholar 

  31. Di Lorenzo ML, Androsch R. Influence of α’-/α-crystal polymorphism on properties of poly(L-lactic acid). Polym Int. 2019;68:320–34.

    Article  CAS  Google Scholar 

  32. Diep PTN, Mochizuki M, Doi M, Takagi H, Shimizu N, Igarashi N, et al. Effects of a special diluent as an agent of improving the crystallizability of poly(L-lactic acid). Polym J. 2019;51:283–94.

    Article  CAS  Google Scholar 

  33. Luo BH, Hsu CE, Li JH, Zhao LF, Liu MX, Wang XY, et al. Nano-composite of poly(L-lactide) and halloysite nanotubes surface-grafted with L-lactide oligomer under microwave irradiation. J Biomed Nanotechnol. 2013;9:649–58.

    Article  CAS  PubMed  Google Scholar 

  34. Xu W, Luo B, Wen W, Xie W, Wang X, Liu M, et al. Surface modification of halloysite nanotubes with L-lactic acid: an effective route to high-performance poly(L-lactide) composites. J Appl Polym Sci. 2015;132:41451(1)–(9).

    Google Scholar 

  35. Srithep Y, Nealey P, Turng LS. Effects of annealing time and temperature on the crystallinity and heat resistance behavior of injection-molded poly(lactic acid). Polym Eng Sci. 2013;53:580–8.

    Article  CAS  Google Scholar 

  36. Rabiej S. WAXS investigations of the amorphous phase structure in linear polyethylene and ethylene-1-octene homogeneous copolymers. Fibres Text East Eur. 2005;13:30–4.

    CAS  Google Scholar 

  37. Sonneveld EJ, Visser JW. Automatic collection of powder data from photographs. J Appl Cryst. 1975;8:1–7.

    Article  Google Scholar 

  38. Goikhman AS, Kirichenko VI, Budnitskii GA, Korolenko MP, Matsibora NP. X-ray diffraction measurements of the crystallinity of polypropylene fibers. Polym Sci. 1984;26:974–81.

    Google Scholar 

  39. Schmid HK. Quantitative analysis of polymorphic mixes of zirconia by X-ray diffraction. J Am Ceram Soc. 1987;70:367–76.

    Article  CAS  Google Scholar 

  40. Polizzi S, Fagherazzi G, Benedetti A, Battagliarin M, Asano T. Crystallinity of polymers by X-ray diffraction: a new fitting approach. Eur Polym J. 1991;27:85–7.

    Article  CAS  Google Scholar 

  41. Mo Z, Yang B, Zhang H. The degree of crystallinity of multicomponent polymers by WAXD. Chin J Polym Sci. 1994;12:296–301.

    CAS  Google Scholar 

  42. Santos FA, Tavares MIB. Development and characterization of hybrid materials based on biodegradable PLA matrix, microcrystalline cellulose and organophilic silica. Polímeros. 2014;24:561–6.

    Article  CAS  Google Scholar 

  43. Gurunathan T, Mohanty S, Nayak SK. Preparation and performance evaluation of castor oil-based polyurethane prepolymer/polylactide blends. J Mater Sci. 2014;49:8016–30.

    Article  CAS  Google Scholar 

  44. Chung FH, Scott W. A new approach to the determination of crystallinity of polymer by X-ray diffraction. J Appl Cryst. 1973;6:225–30.

    Article  CAS  Google Scholar 

  45. Mano JF. Structural evolution of the amorphous phase during crystallization of poly(L-lactic acid): a synchrotron wide-angle X-ray scattering study. J Non-cryst Solids. 2007;353:2567–72.

    Article  CAS  Google Scholar 

  46. Guo L, Spegazzini N, Sato H, Hashimoto T, Masunaga H, Sasaki S, et al. Multistep crystallization process involving sequential formations of density fluctuations, “intermediate structures”, and lamellar crystallites: Poly(3-hydroxybutyrate) as investigated by time-resolved synchrotron SAXS and WAXD. Macromolecules. 2012;45:313–28.

    Article  CAS  Google Scholar 

  47. He BB. Chapter 12. Quantitative analysis. In: He BB, editors. Two-dimensional X-ray diffraction. New Jersey:John Wiley & Sons Inc.; 2009. p. 369–92.

  48. Solarski S, Ferreira M, Devaux E. Characterization of the thermal properties of PLA fibers by modulated differential scanning calorimetry. Polymer. 2005;46:11187–92.

    Article  CAS  Google Scholar 

  49. Pandey AK, Katiyar V, Sasaki S, Sakurai S. Accelerated crystallization of poly(L-lactic acid) by silk fibroin nanodisc. Polym J. 2019. https://doi.org/10.1038/s41428-019-0229-9.

  50. Wasanasuk K, Tashiro K, Hanesaka M, Ohhara T, Kurihara K, Kuroki R, et al. Crystal structure analysis of poly(L-lactic acid) α form on the basis of the 2-dimensional wide-angle synchrotron X-ray and neutron diffraction measurements. Macromolecules. 2011;44:64441–52.

    Google Scholar 

  51. Marubayashi H, Asai S, Hikima T, Takata M, Iwata T. Biobased copolymers composed of L-lactic acid and side-chain-substituted lactic acids: synthesis, properties, and solid-state structure. Macromol Chem Phys. 2013;214:2546–61.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support for this work was provided by JSPS Grant-in-aid for Scientific Research (A) (Research Project Number: 26248053, 17H01221). The synchrotron radiation X-ray diffraction experiments were performed at the BL02B2 of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2014B1285 and Proposal No. 2015B1541). Part of this work was supported by the Cabinet Office, Government of Japan, Cross-ministerial Strategic Innovation Promotion Program (SIP), “Technologies for Smart Bio-industry and Agriculture” (funding agency: Bio-oriented Technology Research Advancement Institution, NARO).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ken Kojio or Atsushi Takahara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsieh, YT., Nozaki, S., Kido, M. et al. Crystal polymorphism of polylactide and its composites by X-ray diffraction study. Polym J 52, 755–763 (2020). https://doi.org/10.1038/s41428-020-0343-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0343-8

This article is cited by

Search

Quick links