Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Investigating the effect of changing parameters when building prediction models for post-stroke aphasia

Abstract

Neuroimaging has radically improved our understanding of how speech and language abilities map to the brain in normal and impaired participants, including the diverse, graded variations observed in post-stroke aphasia. A handful of studies have begun to explore the reverse inference: creating brain-to-behaviour prediction models. In this study, we explored the effect of three critical parameters on model performance: (1) brain partitions as predictive features, (2) combination of multimodal neuroimaging and (3) type of machine learning algorithms. We explored the influence of these factors while predicting four principal dimensions of language and cognition variation in post-stroke aphasia. Across all four behavioural dimensions, we consistently found that prediction models derived from diffusion-weighted data did not improve performance over models using structural measures extracted from T1 scans. Our results provide a set of principles to guide future work aiming to predict outcomes in neurological patients from brain imaging data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A schematic representation of the prediction model creations.
Fig. 2: Cross-validation approach to determine the optimal number of components for PCA.
Fig. 3: Lesion overlap map for 69 patients with left-hemisphere post-stroke aphasia.
Fig. 4: Model performance across different input features.
Fig. 5: Model performance across machines and brain partitions.

Similar content being viewed by others

Data availability

The conditions of our ethical approval do not permit the public archiving of anonymized study data. The anonymized data necessary for reproducing the results in this article can be requested from the corresponding authors.

Code availability

The computer code that supports the findings of this study is available from the corresponding author on reasonable request.

References

  1. Adamson, J., Beswick, A. & Ebrahim, S. Is stroke the most common cause of disability? J. Stroke Cerebrovasc. Dis. 13, 171–177 (2004).

    PubMed  Google Scholar 

  2. Berthier, M. L. Poststroke aphasia: epidemiology, pathophysiology and treatment. Drugs Aging 22, 163–182 (2005).

    CAS  PubMed  Google Scholar 

  3. Engelter, S. T. et al. Epidemiology of aphasia attributable to first ischemic stroke: incidence, severity, fluency, etiology, and thrombolysis. Stroke 37, 1379–1384 (2006).

    PubMed  Google Scholar 

  4. Halai, A. D., Woollams, A. M. & Lambon Ralph, M. A. Predicting the pattern and severity of chronic post-stroke language deficits from functionally-partitioned structural lesions. NeuroImage Clin. 19, 1–13 (2018).

    PubMed  PubMed Central  Google Scholar 

  5. Hope, T. M. H., Leff, A. P. & Price, C. J. Predicting language outcomes after stroke: is structural disconnection a useful predictor? NeuroImage Clin. 19, 22–29 (2018).

    PubMed  PubMed Central  Google Scholar 

  6. Hope, T. M. H., Seghier, M. L., Leff, A. P. & Price, C. J. Predicting outcome and recovery after stroke with lesions extracted from MRI images. NeuroImage Clin. 22, 424–433 (2013).

    Google Scholar 

  7. Hope, T. M. H. et al. Comparing language outcomes in monolingual and bilingual stroke patients. Brain 138, 1070–1083 (2015).

    PubMed  PubMed Central  Google Scholar 

  8. Pustina, D. et al. Enhanced estimations of post-stroke aphasia severity using stacked multimodal predictions. Hum. Brain Mapp. 38, 5603–5615 (2017).

    PubMed  PubMed Central  Google Scholar 

  9. Yourganov, G., Fridriksson, J., Rorden, C., Gleichgerrcht, E. & Bonilha, L. Multivariate connectome-based symptom mapping in post-stroke patients: networks supporting language and speech. J. Neurosci. 36, 6668–6679 (2016).

  10. Yourganov, G., Smith, K. G., Fridriksson, J. & Rorden, C. Predicting aphasia type from brain damage measured with structural MRI. Cortex 73, 203–215 (2015).

    PubMed  PubMed Central  Google Scholar 

  11. Godefroy, O., Dubois, C., Debachy, B., Leclerc, M. & Kreisler, A. Vascular aphasias: main characteristics of patients hospitalized in acute stroke units. Stroke 33, 702–705 (2002).

    CAS  PubMed  Google Scholar 

  12. Kasselimis, D. S., Simos, P. G., Peppas, C., Evdokimidis, I. & Potagas, C. The unbridged gap between clinical diagnosis and contemporary research on aphasia: a short discussion on the validity and clinical utility of taxonomic categories. Brain Lang. 164, 63–67 (2017).

    PubMed  Google Scholar 

  13. Poeppel, D., Emmorey, K., Hickok, G. & Pylkkänen, L. Towards a new neurobiology of language. J. Neurosci. 32, 14125–14131 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Schwartz, M. F. What the classical aphasia categories can’t do for us, and why. Brain Lang. 21, 3–8 (1984).

    CAS  PubMed  Google Scholar 

  15. Butler, R. A., Lambon Ralph, M. A. & Woollams, A. M. Capturing multidimensionality in stroke aphasia: mapping principal behavioural components to neural structures. Brain 137, 3248–2366 (2014).

    PubMed  PubMed Central  Google Scholar 

  16. Halai, A. D., Woollams, A. M. & Lambon Ralph, M. A. Using principal component analysis to capture individual differences within a unified neuropsychological model of chronic post-stroke aphasia: revealing the unique neural correlates of speech fluency, phonology and semantics. Cortex 86, 275–289 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. Lacey, E. H., Skipper-Kallal, L. M., Xing, S., Fama, M. E. & Turkeltaub, P. E. Mapping common aphasia assessments to underlying cognitive processes and their neural substrates. Neurorehabil. Neural Repair 31, 442–450 (2017).

    PubMed  PubMed Central  Google Scholar 

  18. Mirman, D. et al. Neural organization of spoken language revealed by lesion–symptom mapping. Nat. Commun. 6, 6762 (2015).

    CAS  PubMed  Google Scholar 

  19. Mirman, D., Zhang, Y., Wang, Z., Coslett, H. B. & Schwartz, M. F. The ins and outs of meaning: behavioral and neuroanatomical dissociation of semantically-driven word retrieval and multimodal semantic recognition in aphasia. Neuropsychologia 76, 208–219 (2015).

    PubMed  PubMed Central  Google Scholar 

  20. Patterson, K. & Lambon Ralph, M. A. Selective disorders of reading? Curr. Opin. Neurobiol. 9, 235–239 (1999).

    CAS  PubMed  Google Scholar 

  21. Seidenberg, M. S. & McClelland, J. L. A distributed, developmental model of word recognition and naming. Psychol. Rev. 96, 523–568 (1989).

    CAS  PubMed  Google Scholar 

  22. Ueno, T., Saito, S., Rogers, T. T. & Lambon Ralph, M. A. Lichtheim 2: synthesizing aphasia and the neural basis of language in a neurocomputational model of the dual dorsal–ventral language pathways. Neuron 72, 385–396 (2011).

    CAS  PubMed  Google Scholar 

  23. Ueno, T. & Lambon Ralph, M. A. The roles of the ‘ventral’ semantic and ‘dorsal’ pathways in conduite d’approche: a neuroanatomically-constrained computational modeling investigation. Front. Hum. Neurosci. 7, 422 (2013).

    PubMed  PubMed Central  Google Scholar 

  24. Shen, X., Tokoglu, F., Papademetris, X. & Constable, R. T. Groupwise whole-brain parcellation from resting-state fMRI data for network node identification. Neuroimage 82, 403–415 (2013).

    CAS  PubMed  Google Scholar 

  25. Craddock, R. C., James, G. A., Holtzheimer, P. E., Hu, X. P. & Mayberg, H. S. A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33, 1914–1928 (2012).

    PubMed  Google Scholar 

  26. Saur, D. et al. Early functional magnetic resonance imaging activations predict language outcome after stroke. Brain 133, 1252–1264 (2010).

    PubMed  Google Scholar 

  27. Michotey, P., Moskow, N. P. & Salamon, G. in Radiology of the Skull and Brain (eds Newton, T. H. & Poots, D. G.) 1471–1478 (Mosby, 1974).

  28. Zhao, Y., Halai, A. D. & Lambon Ralph, M. A. Evaluating the granularity and statistical structure of lesions and behaviour in post-stroke aphasia. Preprint at bioRxiv https://doi.org/10.1101/802595 (2019).

  29. Basilakos, A. et al. Regional white matter damage predicts speech fluency in chronic post-stroke aphasia. Front. Hum. Neurosci. 8, 845 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. Eggert, G.H. Wernicke's Works on Aphasia: A Sourcebook and Review (Mouton de Gruyter, 1977).

  31. Kinoshita, M. et al. Role of fronto-striatal tract and frontal aslant tract in movement and speech: an axonal mapping study. Brain Struct. Funct. 220, 3399–3412 (2015).

    PubMed  Google Scholar 

  32. Duffau, H., Gatignol, P., Mandonnet, E., Capelle, L. & Taillandier, L. Intraoperative subcortical stimulation mapping of language pathways in a consecutive series of 115 patients with grade II glioma in the left dominant hemisphere. J. Neurosurg. 109, 461–471 (2008).

    PubMed  Google Scholar 

  33. Marebwa, B. K. et al. Chronic post-stroke aphasia severity is determined by fragmentation of residual white matter networks. Sci. Rep. 7, 8188 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. Geller, J., Thye, M. & Mirman, D. Estimating effects of graded white matter damage and binary tract disconnection on post-stroke language impairment. Neuroimage 189, 248–257 (2019).

    PubMed  Google Scholar 

  35. Hope, T. M. H., Seghier, M. L., Prejawa, S., Leff, A. P. & Price, C. J. Distinguishing the effect of lesion load from tract disconnection in the arcuate and uncinate fasciculi. Neuroimage 125, 1169–1173 (2016).

    PubMed  Google Scholar 

  36. Marchina, S. et al. Impairment of speech production predicted by lesion load of the left arcuate fasciculus. Stroke 42, 2251–2256 (2011).

    PubMed  PubMed Central  Google Scholar 

  37. Abraham, A. et al. Machine learning for neuroimaging with scikit-learn. Front. Neuroinform. 8, 14 (2014).

    PubMed  PubMed Central  Google Scholar 

  38. Grotegerd, D. et al. MANIA—a pattern classification toolbox for neuroimaging data. Neuroinformatics 12, 471–486 (2014).

    PubMed  Google Scholar 

  39. Hanke, M. et al. PyMVPA: a Python toolbox for multivariate pattern analysis of fMRI data. Neuroinformatics 7, 37–53 (2009).

    PubMed  PubMed Central  Google Scholar 

  40. Hanke, M. et al. PyMVPA: a unifying approach to the analysis of neuroscientific data. Front. Neuroinform. 3, 3 (2009).

    PubMed  PubMed Central  Google Scholar 

  41. Hebart, M. N. & Baker, C. I. Deconstructing multivariate decoding for the study of brain function. Neuroimage 180, 4–18 (2018).

    PubMed  Google Scholar 

  42. Kriegeskorte, N., Mur, M. & Bandettini, P. Representational similarity analysis—connecting the branches of systems neuroscience. Front. Syst. Neurosci. 2, 4 (2008).

    PubMed  PubMed Central  Google Scholar 

  43. LaConte, S., Strother, S., Cherkassky, V., Anderson, J. & Hu, X. Support vector machines for temporal classification of block design fMRI data. Neuroimage 26, 317–329 (2005).

    PubMed  Google Scholar 

  44. Oosterhof, N. N., Connolly, A. C. & Haxby, J. V. CoSMoMVPA: multi-modal multivariate pattern analysis of neuroimaging data in MATLAB/GNU Octave. Front. Neuroinform. 10, 27 (2016).

    PubMed  PubMed Central  Google Scholar 

  45. Pereira, F. & Botvinick, M. Information mapping with pattern classifiers: a comparative study. Neuroimage 56, 476–496 (2011).

    PubMed  Google Scholar 

  46. Schrouff, J. et al. PRoNTo: pattern recognition for neuroimaging toolbox. Neuroinformatics 11, 19–37 (2013).

    Google Scholar 

  47. Huang, J. & Zhang, T. The benefit of group sparsity. Ann. Stat. 38, 1978–2004 (2010).

    Google Scholar 

  48. Filippone, M. et al. Probabilistic prediction of neurological disorders with a statistical assessment of neuroimaging data modalities. Ann. Appl. Stat. 6, 1883–1905 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Haufe, S. et al. On the interpretation of weight vectors of linear models in multivariate neuroimaging. Neuroimage 87, 96–110 (2014).

    PubMed  Google Scholar 

  50. Weichwald, S. et al. Causal interpretation rules for encoding and decoding models in neuroimaging. Neuroimage 110, 48–59 (2015).

    PubMed  Google Scholar 

  51. Schrouff, J., Mourão-Miranda, J., Phillips, C. & Parvizi, J. Decoding intracranial EEG data with multiple kernel learning method. J. Neurosci. Methods 261, 19–28 (2016).

    PubMed  PubMed Central  Google Scholar 

  52. Schrouff, J. et al. Embedding anatomical or functional knowledge in whole-brain multiple kernel learning models. Neuroinformatics 16, 117–143 (2018).

    PubMed  PubMed Central  Google Scholar 

  53. Penny, W., Friston, K., Ashburner, J., Kiebel, S. & Nichols, T., eds. Statistical Parametric Mapping: The Analysis of Functional Brain Images (Academic Press, 2007).

  54. Jeffreys, H. The Theory of Probability (Oxford Univ. Press, 1961).

  55. Goodglass, H. & Kaplan, E. The Assessment of Aphasia and Related Disorders: Revised (Lea & Febiger, 1972).

  56. Kertesz, A. Western Aphasia Battery (Grune & Stratton, 1982).

  57. Kümmerer, D. et al. Damage to ventral and dorsal language pathways in acute aphasia. Brain 136, 619–629 (2013).

    PubMed  PubMed Central  Google Scholar 

  58. Geschwind, N. The organization of language and the brain. Science 170, 940–944 (1970).

    CAS  PubMed  Google Scholar 

  59. Hickok, G. & Poeppel, D. The cortical organization of speech processing. Nat. Rev. Neurosci. 8, 393–402 (2007).

    CAS  PubMed  Google Scholar 

  60. Lichtheim, L. in Broca’s Region (eds Grodzinsky, Y. & Amunts, K.) 318–334 (Oxford Univ. Press, 2009).

  61. Catani, M. & Ffytche, D. H. The rises and falls of disconnection syndromes. Brain 128, 2224–2239 (2005).

    PubMed  Google Scholar 

  62. Staffaroni, A. M. et al. Longitudinal multimodal imaging and clinical endpoints for frontotemporal dementia clinical trials. Brain 142, 443–459 (2019).

    PubMed  PubMed Central  Google Scholar 

  63. Alyahya, R. S. W., Halai, A. D., Conroy, P. & Lambon Ralph, M. A. Noun and verb processing in aphasia: behavioural profiles and neural correlates. NeuroImage Clin. 18, 215–230 (2018).

    PubMed  PubMed Central  Google Scholar 

  64. Alyahya, R. S. W., Halai, A. D., Conroy, P. & Lambon Ralph, M. A. The behavioural patterns and neural correlates of concrete and abstract verb processing in aphasia: a novel verb semantic battery. NeuroImage Clin. 17, 811–825 (2018).

    PubMed  Google Scholar 

  65. Conroy, P., Sotiropoulou Drosopoulou, C., Humphreys, G. F., Halai, A. D. & Lambon Ralph, M. A. Time for a quick word? The striking benefits of training speed and accuracy of word retrieval in post-stroke aphasia. Brain 141, 1815–1827 (2018).

    PubMed  Google Scholar 

  66. Woollams, A. M., Halai, A. D. & Lambon Ralph, M. A. Mapping the intersection of language and reading: the neural bases of the primary systems hypothesis. Brain Struct. Funct. 223, 3769–3786 (2018).

    PubMed  Google Scholar 

  67. Halai, A. D., Woollams, A. M. & Lambon Ralph, M. A. Triangulation of language–cognitive impairments, naming errors and their neural bases post-stroke. NeuroImage Clin. 17, 465–473 (2018).

    PubMed  Google Scholar 

  68. Tochadse, M., Halai, A. D., Lambon Ralph, M. A. & Abel, S. Unification of behavioural, computational and neural accounts of word production errors in post-stroke aphasia. NeuroImage Clin. 18, 952–962 (2018).

    PubMed  PubMed Central  Google Scholar 

  69. Schumacher, R., Halai, A. D. & Lambon Ralph, M. A. Assessing and mapping language, attention and executive multidimensional deficits in stroke aphasia. Brain 142, 3202–3216 (2019).

    PubMed  PubMed Central  Google Scholar 

  70. Seghier, M. L., Ramlackhansingh, A., Crinion, J., Leff, A. P. & Price, C. J. Lesion identification using unified segmentation–normalisation models and fuzzy clustering. Neuroimage 41, 1253–1266 (2008).

    PubMed  Google Scholar 

  71. Kay, J., Lesser, R. & Coltheart, M. Psycholinguistic Assessments of Language Processing in Aphasia: PALPA: Aphasiology (Psychology Press, 1992).

  72. Bozeat, S., Lambon Ralph, M. A., Patterson, K., Garrard, P. & Hodges, J. R. Non-verbal semantic impairment in semantic dementia. Neuropsychologia 38, 1207–1215 (2000).

    CAS  PubMed  Google Scholar 

  73. Kaplan, E., Goodglass, H. & Weintraub, S. The Boston Naming Test (Lea & Febinger, 1983).

  74. Jefferies, E., Patterson, K., Jones, R. W. & Lambon Ralph, M. A. Comprehension of concrete and abstract words in semantic dementia. Neuropsychology 23, 492–499 (2009).

    PubMed  PubMed Central  Google Scholar 

  75. Swinburn, K., Baker, G. & Howard, D. CAT: Comprehensive Aphasia Test (Psychology Press, 2005).

  76. Wechsler, D. A. Wechsler Memory Scale—Revised (Psychological Corporation, 1987).

  77. Burgess, P. W. & Shallice, T. The Hayling and Brixton Tests (Pearson Clinical, 1997).

  78. Raven, J. C. Advanced Progressive Matrices, Set II (H. K. Lewis, 1962).

  79. Ballabio, D. A MATLAB toolbox for principal component analysis and unsupervised exploration of data structure. Chemometr. Intell. Lab. Syst. 149, 1–9 (2015).

    CAS  Google Scholar 

  80. Bro, R., Kjeldahl, K., Smilde, A. K. & Kiers, H. A. L. Cross-validation of component models: a critical look at current methods. Anal. Bioanal. Chem. 390, 1241–1251 (2008).

    CAS  PubMed  Google Scholar 

  81. Ashburner, J. & Friston, K. J. Unified segmentation. Neuroimage 26, 839–851 (2005).

    PubMed  Google Scholar 

  82. Wilke, M., de Haan, B., Juenger, H. & Karnath, H. O. Manual, semi-automated, and automated delineation of chronic brain lesions: a comparison of methods. Neuroimage 56, 2038–2046 (2011).

    PubMed  Google Scholar 

  83. Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. FSL. Neuroimage 62, 782–790 (2012).

    PubMed  Google Scholar 

  84. Smith, S. M. et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, S208–S219 (2004).

    PubMed  Google Scholar 

  85. Andersson, J. L. R., Skare, S. & Ashburner, J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 20, 870–888 (2003).

    PubMed  Google Scholar 

  86. Andersson, J. L. R. & Sotiropoulos, S. N. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 125, 1063–1078 (2016).

    PubMed  Google Scholar 

  87. Andersson, J. L. R., Graham, M. S., Zsoldos, E. & Sotiropoulos, S. N. Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images. Neuroimage 141, 556–572 (2016).

    PubMed  Google Scholar 

  88. Behrens, T. E. J., Berg, H. J., Jbabdi, S., Rushworth, M. F. S. & Woolrich, M. W. Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34, 144–155 (2007).

    CAS  PubMed  Google Scholar 

  89. Behrens, T. E. J. et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 50, 1077–1088 (2003).

    CAS  PubMed  Google Scholar 

  90. Bozzali, M. et al. Anatomical connectivity mapping: a new tool to assess brain disconnection in Alzheimer’s disease. Neuroimage 54, 2045–2051 (2011).

    PubMed  Google Scholar 

  91. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841 (2002).

    PubMed  Google Scholar 

  92. Jenkinson, M. & Smith, S. A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5, 143–156 (2001).

    CAS  PubMed  Google Scholar 

  93. Hastie, T., Tibshirani, R. & Friedman, J. Elements of Statistical Learning (Springer, 2009); https://doi.org/10.1007/978-0-387-84858-7

  94. Tipping, M. E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1, 211–244 (2001).

  95. Rasmussen, C. E. & Williams, C. K. I. Gaussian Processes for Machine Learning (MIT Press, 2006).

  96. Bach, F. R., Lanckriet, G. R. G. & Jordan, M. I. Multiple kernel learning, conic duality, and the SMO algorithm. in Proc. Twenty-First International Conference on Machine Learning (ICML 2004) https://doi.org/10.1145/1015330.1015424 (Association for Computing Machinery, 2004).

  97. Rakotomamonjy, A., Bach, F. R., Canu, S. & Grandvalet, Y. SimpleMKL. J. Mach. Learn. Res. 9, 2491–2521 (2008).

    Google Scholar 

  98. Morey, R. D. et al. BayesFactor: Computation of Bayes Factors for Common Designs. https://cran.r-project.org/web/packages/BayesFactor/index.html (CRAN, 2018).

  99. Fritz, C. O., Morris, P. E. & Richler, J. J. Effect size estimates: current use, calculations, and interpretation. J. Exp. Psychol. Gen. 141, 2–18 (2012).

    PubMed  Google Scholar 

  100. Rosenthal, R. in The Handbook of Research Synthesis (eds Cooper, H. & Hedges, L. V.) 231–244, (Sage, 1994).

  101. Finn, E. S. et al. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the patients, families, carers and community support groups for their continued, enthusiastic support of our research programme. This research was supported by grants from The Rosetrees Trust (no. A1699) and ERC (GAP: 670428 - BRAIN2MIND_NEUROCOMP). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.D.H., A.M.W. and M.A.L.R. conceived and designed the experiment. A.D.H. collected and analysed the data. A.D.H., A.M.W. and M.A.LR. wrote the paper.

Corresponding authors

Correspondence to Ajay D. Halai or Matthew A. Lambon Ralph.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor: Marike Schiffer.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3 and Supplementary Results 1.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halai, A.D., Woollams, A.M. & Lambon Ralph, M.A. Investigating the effect of changing parameters when building prediction models for post-stroke aphasia. Nat Hum Behav 4, 725–735 (2020). https://doi.org/10.1038/s41562-020-0854-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-020-0854-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing