Skip to main content
Log in

Phylogenetic revision of Petrakia and Seifertia (Melanommataceae, Pleosporales): new and rediscovered species from Europe and North America

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

The phylogenetic revision of the genera Petrakia and Seifertia using LSU, ITS, RPB2 and TEF1 sequences and the re-evaluation of their morphological characteristics lead to several reclassifications: The genus Pseudodidymella as well as the genera Mycodidymella and Xenostigmina are synonymized with the genus Petrakia. Based on ITS sequence comparisons, it was previously suspected that the leaf spot pathogen Pseudodidymella fagi, which occurs on the Japanese beech Fagus crenata in Japan, is conspecific to the pathogen attacking the European beech Fagus sylvatica in Switzerland and Germany since 2008. Herein, we show that Japanese and European collections represent separate species and describe the European one as Petrakia liobae new to science. Apart from that, we make the new combinations Petrakia fagi and Petrakia minima. The names Petrakia aesculi and Petrakia aceris are validated. A 60-year-old collection from Wisconsin USA, designated as Petrakia echinata on leaves of silver maple (Acer saccharinum), proved to be another species new to science and is described here as Petrakia greenei. Consequently, there is currently no evidence of the European P. echinata to occur in North America. In contrast, P. echinata was found to infect the North American big leaf maple (Acer macrophyllum) in Europe. Antromycopsis alpina, described in 1914, was rediscovered in the Swiss Alps from dry fruits of Rhododendron ferrugineum. It is combined in Seifertia as S. alpina, based on molecular phylogenetic and morphological analyses. This anamorphic fungus appears to be native to Europe and does not cause a bud disease on Rhododendron in contrast to the closely related S. azaleae. Seifertia shangrilaensis is the third species of this genus that is closely related to Petrakia. Both genera belong to the family Melanommataceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Backus MP, Evans RI (1968) H. C. Greene (1904-1967). Mycologia 60(5):994–998

    Article  CAS  PubMed  Google Scholar 

  • Baral H-O, Queloz V, Hosoya T (2014) Hymenoscyphus fraxineus, the correct scientific name for the fungus causing ash dieback in Europe. IMA Fungus 5(1):79–80. https://doi.org/10.5598/imafungus.2014.05.01.09

    Article  PubMed  PubMed Central  Google Scholar 

  • Bedlan G (2017) Petrakia juniperi sp. nov., a new fungus on Juniperus sp. J Kult pflanzen 69(5):173–174

    Google Scholar 

  • Beenken L, Senn-Irlet B (2016) Neomyceten in der Schweiz, Stand des Wissens und Abschätzung des Schadpotentials der mit Pflanzen assoziierten gebietsfremden Pilze. WSL Berichte 50:1–93. https://www.dora.lib4ri.ch/wsl/islandora/object/wsl:9106

    Google Scholar 

  • Beenken L, Zoller S, Berndt R (2012) Rust fungi on Annonaceae II: the genus Dasyspora Berk. & M.A. Curtis. Mycologia 104:659–681. https://doi.org/10.3852/11-068

    Article  CAS  PubMed  Google Scholar 

  • Butin H (2011) Krankheiten der Wald- und Parkbäume, 4th edn. Ulmer, Stuttgart

    Google Scholar 

  • Butin H, Holdenrieder O, Sieber TN (2013) The complete life cycle of Petrakia echinata. Mycol Prog 12:427–435

    Article  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple align- ments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  CAS  PubMed  Google Scholar 

  • Caudullo G, Welk E, San-Miguel-Ayanz J (2017) Chorological maps for the main European woody species. Data in brief 12:662–666. https://doi.org/10.1016/j.dib.2017.05.007

  • Caudullo G, Welk E, San-Miguel-Ayanz J (2018) Fagus sylvatica chorology. Figshare, Fileset. https://Figshare.com/articles/Fagus_sylvatica_chorology/5101144. Accessed 10 Sept 2019

  • Cech TL, Wiener L (2017) Pseudodidymella fagi, ein neuer Blattbräunepilz der Rotbuche in Österreich. Forstschutz Aktuell 62:22–25

    Google Scholar 

  • Crous PW, Braun U, Wingfield MJ, Wood AR, Shin HD, Summerell BA, Alfenas AC, Cumagun CJ, Groenewald JZ (2009) Phylogeny and taxonomy of obscure genera of microfungi. Persoonia 22:139–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czachura P, Owczarek-Kościelniak M, Piątek M (2018) Pseudodidymella fagi in Slovakia: first detection, morphology and culture characteristics. Forest Pathol 2018:e12479. https://doi.org/10.1111/efp.12479

    Article  Google Scholar 

  • Davis WH (1939) A bud and twig blight of azaleas caused by Sporocybe azaleae. Phytopathology 29:517–529

    CAS  Google Scholar 

  • Delgado G, Koukol O, Cáceres O, Piepenbring M (2017) The phylogenetic placement of Ernakulamia cochinensis within Pleosporales (Dothideomycetes, Ascomycota). Cryptogam Mycol 38(4):435–451

    Article  Google Scholar 

  • Den Bakker HC, Zuccarello GC, Kuyper TW, Noordeloos ME (2004) Evolution and host specificity in the ectomycorrhizal genus Leccinum. New Phytol 163:201–215

    Article  Google Scholar 

  • Denk T, Grimm GW (2009) The biogeographic history of beech trees. Rev Palaeobot Palynol 158:83–100

    Article  Google Scholar 

  • Desprez-Loustau ML (2009) Alien Fungi of Europe. In: Drake JA (ed) DAISIE, Handbook of Alien Species in Europe. Springer, pp 15–28

  • Endrestøl A (2017) Graphocephala fennahi Young, 1977 (Hemiptera, Cicadellidae) and Seifertia azaleae (Peck) Partr. & Morgan-Jones (Ascomycota, Dothideomycetes) in Norway. Norw J Entomol 64:112–129

    Google Scholar 

  • Eschen R, O’Hanlon R, Santini A, Vannini A, Roques A, Kirichenko N, Kenis M (2019) Safeguarding global plant health: the rise of sentinels. J Pest Sci 92:29–36

    Article  Google Scholar 

  • Farr DF, Rossman AY (2019) Fungal databases, U.S. national fungus collections, ARS, USDA. https://nt.ars-grin.gov/fungaldatabases/. Accessed 10 Sept 2019

  • Fluri H, Senn-Irlet B, Graf U, Beenken L (2017) Geoglossum heuflerianum – Wiederentdeckung einer alpinen Art in der Schweiz. Osterr Z Pilzkd 26:87–97

    Google Scholar 

  • Funk A (1986) Stigmina zilleri sp. nov., associated with brown leaf spot of broadleaf maple. Can J Bot 65(3):482–483

    Article  Google Scholar 

  • Greene HC (1960) Notes on Wisconsin parasitic fungi. XXVI. Trans Wis Acad Sci Arts Lett 49:85–111

    Google Scholar 

  • Gross A, Hosoya T, Queloz V (2014) Population structure of the invasive forest pathogen Hymenoscyphus pseudoalbidus. Mol Ecol 23:2943–2960

    Article  PubMed  Google Scholar 

  • Gross A, Beenken L, Dubach V, Queloz V, Tanaka K, Hashimoto A, Holdenrieder O (2017) Pseudodidymella fagi and Petrakia deviata: two closely related tree pathogens new to central. Eur For Pathol 00:e12351. https://doi.org/10.1111/efp.12351

    Article  Google Scholar 

  • Hashimoto A, Matsumura M, Hirayama K, Fujimoto R, Tanaka K (2017) Pseudodidymellaceae fam. nov.: phylogenetic affiliations of mycopappus-like genera in Dothideomycetes. Stud Mycol 87:187–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Höhnel FV (1914) Fragmente zur Mykologie (XVI. Mitteilung, Nr. 813 bis 875). Sitz Ber Ak Wiss Wien M-N Klasse, Abt. 1 123:49–155

  • Howell PJ, Wood RKS (1962) Some factors affecting rhododendron bud blast and its control. Ann Appl Biol 50:723–733

    Article  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R (2007) Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinformatics 8:460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Index Herbariorum (2019) http://sweetgum.nybg.org/ih/. Accessed 10 Sept 2019

  • Jaklitsch WM, Voglmayr H (2017) Three former taxa of Cucurbitaria and considerations on Petrakia in the Melanommataceae. Sydowia 69:81–95

    PubMed  PubMed Central  Google Scholar 

  • Kaneko S, Yokozawa Y, Kubono T (1988) Bud blight of Rhododendron trees caused by Pycnostysanus azaleae. Ann Phytopathol Soc Japan 54:323–326

    Article  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier trans- form. Nucleic Acids Res 30:3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirisits T (2007) Die Petrakia-Blattbräune des Bergahorns. Forstschutz Aktuell 40:28–31

    Google Scholar 

  • Li GJ, Hyde KD, Zhao RL et al (2016a) Fungal diversity notes 253–366: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 78(1):1–237

    Article  CAS  Google Scholar 

  • Li J, Phookamsak R, Mapook A, Boonmee S, Bhat DJ, Hyde KD, Lumyong (2016b) Seifertia shangrilaensis sp. nov. (Melanommataceae), a new species from Southwest China. Phytotaxa 273(1):34–42. https://doi.org/10.11646/phytotaxa.273.1.3

    Article  Google Scholar 

  • Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol Biol Evol 16:1799–1808

    Article  CAS  PubMed  Google Scholar 

  • Magri D, Vendramin GG, Comps B, Dupanloup I, Geburek T, Gömöry D, Latałowa M, Litt T, Paule L, Roure JM, Tantau I, van der Knaap WO, Petit RJ, de Beaulieu JL (2006) A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol 171:199–221. https://doi.org/10.1111/j.1469-8137.2006.01740.x

    Article  CAS  PubMed  Google Scholar 

  • McMullan M, Rafiqi M, Kaithakottil G et al (2018) The ash dieback invasion of Europe was founded by two genetically divergent individuals. Nat Ecol Evol 2:1000–1008. https://doi.org/10.1038/s41559-018-0548-9

    Article  PubMed  PubMed Central  Google Scholar 

  • MyCoPortal (2019) http://mycoportal.org/portal/index.php. Accessed 10 Sept 2019

  • Nuytinck J, Verbeken A, Miller SL (2007) Worldwide Phylogeny of Lactarius Section Deliciosi Inferred from ITS and Glyceraldehyde-3-Phosphate Dehydrogenase Gene Sequences. Mycologia 99(6):820–832

    Article  CAS  PubMed  Google Scholar 

  • Ogris N, Brglez A, Piškur B (2019) Pseudodidymella fagi in Slovenia: First Report and Expansion of Host Range. Forests 10(9):718. https://doi.org/10.3390/f10090718

    Article  Google Scholar 

  • Park J, Cho S, Lee SH, Shin HD (2013) First Report of Frosty Mildew on Salix koreensis Caused by Mycopappus alni in Korea. J Phytopathol 161:866–869. https://doi.org/10.1111/jph.12133

    Article  Google Scholar 

  • Partridge EC, Morgan-Jones G (2002) Notes on hyphomycetes LXXXVIII: New genera in which to classify Alysidium resinae and Pycnostysanus azaleae, with a consideration of Sorocybe. Mycotaxon 83:335–352

    Google Scholar 

  • Peck CH (1873) [1874] Descriptions of new species of fungi. Bull Buffalo Soc Nat Sci 1:41–72

  • Peglion V (1895) Contributione alla conoscenza della Flora Micologica Avellinese. Malpighia 8:424–460

    Google Scholar 

  • Petrak F (1966) [1968]. Über die Gattungen Petrakia Syd. und Echinosporium Woron. Sydowia 20:186–189

    Google Scholar 

  • Queloz V, Grünig CR, Berndt R, Kowalski T, Sieber TN, Holdenrieder O (2011) Cryptic speciation in Hymenoscyphus albidus. Forest Pathol 41:133–142

    Article  Google Scholar 

  • Redhead SA, White GP (1985) Mycopappus, a new genus of leaf pathogens, and two parasitic Anguillospora species. Can J Bot 63(8):1429–1435

    Article  Google Scholar 

  • Rehner SA, Buckley E (2005) A Beauveria phylogeny inferred from nuclear ITS and EF1-a sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97:84–98

    CAS  PubMed  Google Scholar 

  • Rehner SA, Samuels GJ (1994) Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol Res 98:625–634

    Article  CAS  Google Scholar 

  • Renner SS, Grimm GW, Kapli P, Denk T (2016) Species relationships and divergence times in beeches: new insights from the inclusion of 53 young and old fossils in a birth–death clock model. Philos T R Soc B 371. https://doi.org/10.1098/rstb.2015.0135

  • Ronquist F, Huelsenbeck JP (2005) MrBayes. Version 3.1.2. Bayesian analysis of phylogeny. GNU General Public License

  • Santini A, Ghelardini L, De Pace C et al (2013) Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol 197:238–250

    Article  CAS  PubMed  Google Scholar 

  • Santini A, Liebhold A, Migliorini D, Woodward S (2018) Tracing the role of human civilization in the globalization of plant pathogens. ISME J 12:647–652. https://doi.org/10.1038/s41396-017-0013-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Schardl CL, Craven KD (2003) Interspecific hybridization in plant- associated fungi and oomycetes: A review. Mol Ecol 12:2861–2873

    Article  CAS  PubMed  Google Scholar 

  • Schmitz H (1920) Observations on some common and important diseases of the Rhododendron. Phytopathology 10:273–278

    Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. P Natl Acad Sci USA 109:6241–6246

    Article  CAS  Google Scholar 

  • Seifert KA, Hughes SJ, Boulay H, Louis-Seize G (2007) Taxonomy, nomenclature and phylogeny of three cladosporium-like hyphomycetes, Sorocybe resinae, Seifertia azaleae and the Hormoconis anamorph of Amorphotheca resinae. Stud Mycol 58:235–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sieber TM (2014) Neomyceten – eine anhaltende Bedrohung für den Schweizer Wald. Swiss For J 6:173–182

    Article  Google Scholar 

  • Stalpers JA, Seifertk A, Samsonr A (1991) A revision of the genera Antromycopsis, Sclerostilbum, and Tilachlidiopsis (Hyphomycetes). Can J of Bot 69:6–15

    Article  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stukenbrock EH (2016) The role of hybridization in the evolution and emergence of new fungal plant pathogens. Phytopathology 106:104–112

    Article  CAS  PubMed  Google Scholar 

  • Suto Y, Kawai M (2000) Mycopappus quercus sp. nov., causing frosty mildew in Quercus acutissima. Mycoscience 41(1):55–60

    Article  Google Scholar 

  • Suto Y, Suyama H (2005) Redheadia quercus gen. et sp. nov., the teleomorph of Mycopappus quercus, the frosty mildew fungus in Quercus acutissima. Mycoscience 46(4):227–234

    Article  Google Scholar 

  • Sydow H, Sydow P (1913) Novae fungorum species XI. Ann Mycol 11(5):402–408

    Google Scholar 

  • Tian Q, Liu JK, Hyde KD et al (2015) Phylogenetic relationships and morphological reappraisal of Melanommataceae (Pleosporales). Fungal Divers 74:267–324

    Article  Google Scholar 

  • Turland NJ, Wiersema, JH, Barrie FR et al. (eds.) (2018). International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile 159. Glashütten: Koeltz Botanical Books. https://doi.org/10.12705/Code.2018

  • Van der Aa HA (1968) Petrakia irregularis, a new fungus species. Acta Bot Neerl 17(3):221–225

    Article  Google Scholar 

  • Viennot-Bourgin G (1981) Observation simultanée en France du bud blast du Rhododendron et d’une cicadelle jouant le rôle de vecteur. Agronomie, EDP Sci 1(2):87–92

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watzl O (1937) Über die Bäume und Sträucher des von der Baramba entwässerten Gebietes der Chodschalgruppe und deren Blattkrankheiten, II Pilze an (lebenden) Blättern. Beih Bot Centralbl Abt B 57:431–439

    Google Scholar 

  • Watzl O, Swoboda K, Singer R (1929) Bericht über eine Expedition in den Kaukasus. Anz Akad Wiss Wien 66(1):9–12

    Google Scholar 

  • Wei CZ, Harada Y, Katumoto K (1997) Pseudodidymella fagi gen. et sp. nov. and its hyphomycete anamorph Pycnopleiospora fagi gen. et sp. nov. on Fagus crenata in Japan. Mycologia 89:494–502

    Article  Google Scholar 

  • Wei CZ, Harada Y, Katumoto K (1998) Mycodidymella aesculi gen. et sp. nov. and its synanamorphs Blastostroma aesculi gen. et sp. nov. and Mycopappus aesculi sp. nov. on Aesculus turbinata in Japan. Mycologia 90(2):334–345

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Wong MKM, Goh TK, McKenzie EHC, Hyde KD (2002) Fungi on grasses and sedges: Paratetraploa exappendiculata gen. et sp. nov., Petrakia paracochinensis sp. nov. and Spadicoides versiseptatis sp. nov. (dermatiaceous hyphomycetes). Cryptogamie Mycol 23(82):195–203

    Google Scholar 

Download references

Acknowledgments

Ottmar Holdenrieder (Zurich) gave the impetus for this study. We are greatly obliged to him for important references in our study and manuscript. We thank Hermann Voglmayr (Vienna) for his Austrian collection of P. liobae, Thomas Cech (Vienna) and Marcin Piątek (Krakow) for data on their observations of P. liobae. Jörg Gilgen (Bern) and Beatrice Senn-Irlet (Bern) kindly provided their collections of S. alpina. We thank Anders Endrestøl (Oslo) for his decisive hint on the identity of S. alpina. Felix Neff kindly helped with photography using the Leica DVM6 Digital microscope at the WSL (Birmensdorf). We thank the curators of the herbaria in Harvard (FH), Vienna (W) and Wisconsin (WIS) for the possibility to study their collections. We are very grateful to the Harvard University Herbaria for the permission to publish the images of the type specimens of A. alpina kindly photographed by Genevieve E. Tocci. DNA extractions were performed at the WSL plant protection lab—many thanks for this to Quirin Kupper, Robin Winiger and Stephanie Pfister. Further molecular work and analyses were done at the GDC at ETH Zurich. The two newly described species were consciously named after their first finders in order to pay tribute to the important work of the field mycologists, without which many fungi would remain undiscovered. This study was financed by the WSL internal project “Pseudodydimella fagi, a new emerging disease of European beech.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludwig Beenken.

Additional information

Section Editor: Gerhard Rambold

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Taxonomic novelties: New species:Petrakia greenei Beenken, Andr. Gross & Queloz, Petrakia liobae Beenken, Andr. Gross & Queloz; New combinations:Petrakia fagi (C.Z. Wei, Y. Harada & Katum.) Beenken, Andr. Gross & Queloz, Petrakia minima (A. Hashim. & Kaz. Tanaka) Beenken, Andr. Gross & Queloz, Seifertia alpina (Höhn.) Beenken, Andr. Gross & Queloz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beenken, L., Gross, A. & Queloz, V. Phylogenetic revision of Petrakia and Seifertia (Melanommataceae, Pleosporales): new and rediscovered species from Europe and North America. Mycol Progress 19, 417–440 (2020). https://doi.org/10.1007/s11557-020-01567-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-020-01567-7

Keywords

Navigation