Skip to main content
Log in

Pruning length of lateral branches affects tomato growth and yields in relation to auxin-cytokinin crosstalt

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Lateral branches (LBs) pruning is performed frequently to keep the tomato plants in optimal growth conditions. However, the suitable pruning length of LBs, as well as the physiological and molecular mechanisms of pruning length on plant growth regulation remains elusive in tomato. The effects of pruning length of LBs from 0 to 20 cm on vegetative growth, reproductive growth, labor costs, hormone metabolism and genes transcripts were evaluated in an indeterminate type tomato cultivar. By comprehensive analysis, we provided evidence that pruning length of LBs at about 6–7 cm was suitable for plant growth, high yield, and low labor costs in tomato production. For mechanisms, appropriate extension of pruning length of LBs increased indole acetic acid (IAA) concentrations in root, which promoted the biosynthesis and upward transport of inactive cytokinins (CKs), as well as root development. Meanwhile, existence of LBs inhibited the auxin outflow of the lower flower stalks by regulating transcripts of AUX1 and PIN. Then, the enhanced concentrations of IAA and CKs in ovary could promote fruit swelling. Additionally, pruning length of LBs also influenced the leaf senescence to control photosynthesis. Taken together, we highlight that pruning length of LBs influence auxin and cytokinins homeostasis in relation to growth and yield in tomato plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agusti M, Zaragoza S, Iglesias DJ, Almela V, Primo-Millo E, Talon M (2002) The synthetic auxin 3, 5, 6-TPA stimulates carbohydrate accumulation and growth in citrus fruit. Plant Growth Regul 36:141–147

    CAS  Google Scholar 

  • Barbier FF, Dun EA, Kerr SC, Chabikwa TG, Beveridge CA (2019) An update on the signals controlling shoot branching. Trends Plant Sci 24:3

    Google Scholar 

  • Berleth T, Sachs T (2001) Plant morphogenesis: long-distance coordination and local patterning. Curr Opin Plant Biol 4:57–62

    CAS  PubMed  Google Scholar 

  • Biddington N (1986) The effect of mechanically induced stress in plants - a review. Plant Growth Regul 4:103–123

    CAS  Google Scholar 

  • Bottger M (1974) Apical dominance in roots of Pisum sativum L. Planta 121:253–261

    CAS  PubMed  Google Scholar 

  • Coenen C, Lomax TL (1997) Auxin-cytokinin interactions in higher plants: old problems and new tools. Trends Plant Sci 2:351–356

    CAS  PubMed  Google Scholar 

  • Dai J, Dong H (2011) Stem girdling influences concentrations of endogenous cytokinins and abscisic acid in relation to leaf senescence in cotton. Acta Physiol Plant 33:1697–1705

    CAS  Google Scholar 

  • de Jong M, Wolters-Arts M, García-Martínez JL, Mariani C, Vriezen WH (2011) The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellins signalling during tomato fruit set and development. J Exp Bot 62:617–626

    PubMed  Google Scholar 

  • Ding J, Chen B, Xia X, Mao W, Shi K, Zhou Y et al (2013) Cytokinin-induced parthenocarpic fruit development in tomato is partly dependent on enhanced gibberellin and auxin biosynthesis. PLoS ONE 8:e70080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev Mol Cell Bio 12:211–221

    CAS  Google Scholar 

  • El-Sharkawy I, Sherif S, Kayal WE, Jones B, Li Z, Sullivan AJ et al (2016) Overexpression of plum auxin receptor PslTIR1 in tomato alters plant growth, fruit development and fruit shelf-life characteristics. BMC Plant Biol 16:56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Else MA, Stankiewicz-Davies AP, Crisp CM, Atkinson CJ (2004) The role of polar auxin transport through pedicels of Prunus avium L. in relation to fruit development and retention. J Exp Bot 55:2099–2109

    CAS  PubMed  Google Scholar 

  • Gan S, Amasino RM (2010) Cytokinins in plant senescence: from spray and pray to clone and play. BioEssays 18:557–565

    Google Scholar 

  • Ghanem ME, Albacete A, Smigocki AC, Frébort I, Pospíšilová H, Martínez-Andújar C et al (2011) Root-synthesized cytokinins improve shoot growth and fruit yield in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 62:125–140

    CAS  PubMed  Google Scholar 

  • Gong B, Li X, VandenLangenberg KM, Wen D, Sun S, Wei M et al (2014) Overexpression of S-adenosyl-L-methionine synthetase increased tomato tolerance to alkali stress through polyamine metabolism. Plant Biotechnol J 12:694–708

    CAS  PubMed  Google Scholar 

  • Gong B, Yan Y, Wen D, Shi Q (2017) Hydrogen peroxide produced by NADPH oxidase: a novel downstream signaling pathway in melatonin-induced stress tolerance in Solanum lycopersicum. Physiol Plant 160:396–409

    CAS  PubMed  Google Scholar 

  • Gong B, Yan Y, Zhang L, Cheng F, Liu Z, Shi Q (2019) Unravelling GSNO-R-mediated S-nitrosylation and multiple developmental programmes in tomato plants. Plant Cell Physiol 60:2523–2537

    CAS  PubMed  Google Scholar 

  • Goodwin PB, Morris SC (1979) Application of phytohormones to pea roots after removal of the apex-effect on lateral root production. Aust J Plant Physiol 6:195–200

    CAS  Google Scholar 

  • Hall D (1983) The influence of nitrogen concentration and salinity of recirculating solutions on the early season vigour and productivity of glasshouse tomatoes. J Hort Sci 58:411–415

    CAS  Google Scholar 

  • Hartmann HD (1977) Influence of axillary shoots on growth and yield of tomato varieties. Gartenbauwissenschaft 42:178–184

    Google Scholar 

  • Heuchert JC, Mitchell CA (1983) Inhibition of shoot growth in greenhouse tomato by periodic gyratory shaking. J Am Soc Hort Sci 108:801–805

    Google Scholar 

  • Ito J, Fukaki H, Onoda M, Li L, Li C, Tasaka M et al (2016) Auxin-dependent compositional change in mediator in ARF7- and ARF19-mediated transcription. Proc Natl Acad Sci USA 113:6562–6567

    CAS  PubMed  Google Scholar 

  • Jing H, Strader LC (2019) Interplay of auxin and cytokinin in lateral root development. Int J Mol Sci 20:486

    CAS  PubMed Central  Google Scholar 

  • Joubès J, Walsh D, Raymond P, Chevalier C (2000) Molecular characterization of the expression of distinct classes of cyclins during the early development of tomato fruit. Planta 211:430–439

    PubMed  Google Scholar 

  • Leyser O (2018) Auxin signaling. Plant Physiol 176:465–479

    CAS  PubMed  Google Scholar 

  • Kim JI, Murphy AS, Baek D, Lee SW, Yun DJ, Bressan RA et al (2011) YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana. J Exp Bot 62:3981–3992

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Mo XR, Shou HX, Wu P (2006) Cytokinin-mediated cell cycling arrest of pericycle founder cells in lateral root initiation of Arabidopsis. Plant Cell Physiol 47:1112–1123

    CAS  PubMed  Google Scholar 

  • Liu S, Zhang Y, Feng Q, Qin L, Pan C, Lamin-Samu AT et al (2018) Tomato AUXIN RESPONSE FACTOR 5 regulates fruit set and development via the mediation of auxin and gibberellin signaling. Sci Rep 8:2971

    PubMed  PubMed Central  Google Scholar 

  • Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J 28:465–474

    CAS  PubMed  Google Scholar 

  • Marhavý P, Bielach A, Abas L, Abuzeineh A, Duclercq J, Tanaka H et al (2011) Cytokinin modulates endocytic trafficking of PIN1 auxin efflux carrier to control plant organogenesis. Dev Cell 21:796–804

    PubMed  Google Scholar 

  • Marhavý P, Duclercq J, Weller B, Feraru E, Bielach A, Offringa R et al (2014) Cytokinin controls polarity of PIN1-dependent auxin transport during lateral root organogenesis. Curr Biol 24:1031–1037

    PubMed  Google Scholar 

  • Mariotti L, Picciarelli P, Lombardi L, Ceccarelli N (2011) Fruit-set and early fruit growth in tomato are associated with increases in indoleacetic acid, cytokinin, and bioactive gibberellin contents. J Plant Growth Regul 30:405–415

    CAS  Google Scholar 

  • Mason MG, Mathews DE, Argyros DA, Maxwell BB, Kieber JJ, Alonso JM et al (2005) Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. Plant Cell 17:3007–3018

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuo S, Kikuchi K, Fukuda M, Honda I, Imanishi S (2012) Roles and regulation of cytokinins in tomato fruit development. J Exp Bot 63:5569–5579

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGarry RC, Ayre BG (2012) Manipulating plant architecture with members of the CETS gene family. Plant Sci 188:71–81

    PubMed  Google Scholar 

  • Mitchell C, Myers P (1995) Mechanical stress regulation of plant growth and development. Hort Rev 17:1–41

    CAS  Google Scholar 

  • Morffy NJ, Strader LC (2018) Locally sourced: auxin biosynthesis and transport in the root meristem. Dev Cell 47:262–264

    CAS  PubMed  Google Scholar 

  • Mueller-Roeber B, Balazadeh S (2014) Auxin and its role in plant senescence. J Plant Growth Regul 33:21–33

    CAS  Google Scholar 

  • Thimann KV, Skoog F (1933) Studies on the growth hormone of plants: III. The inhibiting action of the growth substance on bud development. Proc Natl Acad Sci USA 19:714–716

    CAS  PubMed  Google Scholar 

  • Navarrete M, Jeannequin B (2000) Effect of frequency of axillary bud pruning on vegetative growth and fruit yield in greenhouse tomato crops. Sci Hortic 86:197–210

    Google Scholar 

  • Navarrete M, Jeannequin B, Sebillotte M (1997) Vigour of greenhouse tomato plants (Lycopersicon esculentum Mill.): analysis of the criteria used by growers and search for objective criteria. J Hortic Sci 72:821–829

    Google Scholar 

  • New Lee O, Uchida Y, Nemoto K, Mine Y, Sugiyama N (2015) Quantitative trait loci analysis of lateral shoot growth in tomato. Sci Hortic 192:117–124

    Google Scholar 

  • Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C et al (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17:444–463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palni LMS, Burch L, Horgan R (1988) The effect of auxin concentration on cytokinin stability and metabolism. Planta 174:231–234

    CAS  PubMed  Google Scholar 

  • Pattison RJ, Catalá C (2012) Evaluating auxin distribution in tomato (Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families. Plant J 70:585–598

    CAS  PubMed  Google Scholar 

  • Pnueli L, Gutfinger T, Hareven D, Ben-Naim O, Ron N, Adir N et al (2001) Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. Plant Cell 13:2687–2702

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Z, Li Z, Miao Q, Yang Y, Deng W, Hao Y (2011) The auxin receptor homologue in Solanum lycopersicum stimulates tomato fruit set and leaf morphogenesis. J Exp Bot 62:2815–2826

    CAS  PubMed  Google Scholar 

  • Rinaldi MA, Liu J, Enders TA, Bartel B, Strader LC (2012) A gain-of-function mutation in IAA16 confers reduced responses to auxin and abscisic acid and impedes plant growth and fertility. Plant Mol Biol 79:359–373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roman H, Girault T, Barbier F, Péron T, Brouard N, Pěnčík A et al (2016) Cytokinins are initial targets of light in the control of bud outgrowth. Plant Physiol 172:489–509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shani E, Ben-Gera H, Shleizer-Burko S, Burko Y, Weiss D, Ori N (2010) Cytokinin regulates compound leaf development in tomato. Plant Cell 22:3206–3217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shin R, Burch AY, Huppert KA, Tiwari SB, Murphy AS, Guilfoyle TJ et al (2007) The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. Plant Cell 19:2440–2453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva WB, Vicente MH, Robledo JM, Reartes DS, Ferrari RC, Bianchetti R et al (2018) Self-pruning acts synergistically with diageotropica to guide auxin responses and proper growth form. Plant Physiol 176:2904–2916

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smet ID (2010) Multimodular auxin response controls lateral root development in Arabidopsis. Plant Signal Behav 5:580–582

    PubMed  PubMed Central  Google Scholar 

  • Stevens MA, Rick CM (1986) Genetics and breeding. In: Atherton J, Rudich J (eds) The tomato crop: a scientific basis for improvement. Chapman & Hall, London, pp 35–100

    Google Scholar 

  • Su L, Bassa C, Audran C, Mila I, Cheniclet C, Chevalier C et al (2014) The auxin Sl-IAA17 transcriptional repressor controls fruit size via the regulation of endoreduplication-related cell expansion. Plant Cell Physiol 55:1969–1976

    CAS  PubMed  Google Scholar 

  • Su YH, Liu YB, Bai B, Zhang XS (2015) Establishment of embryonic shoot-root axis is involved in auxin and cytokinin response during Arabidopsis somatic embryogenesis. Front Plant Sci 5:792

    PubMed  PubMed Central  Google Scholar 

  • Su YH, Liu YB, Zhang XS (2011) Auxin-cytokinin interaction regulates meristem development. Mol Plant 4:616–625

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su YH, Su YX, Liu YG, Zhang XS (2013) Abscisic acid is required for somatic embryo initiation through mediating spatial auxin response in Arabidopsis. Plant Growth Regul 69:167–176

    CAS  Google Scholar 

  • Sun CH, Yu JQ, Wen LZ, Guo YH, Sun SX, Hao YJ, et al (2018) Chrysanthemum MADS-box transcription factor CmANR1 modulates lateral root development via homo-/heterodimerization to influence auxin accumulation in Arabidopsis. Plant Sci 266:27–36

    CAS  PubMed  Google Scholar 

  • Tang LP, Zhou C, Wang SS, Yuan J, Zhang XS, Su YH (2017) FUSCA3 interacting with leafy cotyledon2 controls lateral root formation through regulating YUCCA4 gene expression in Arabidopsis thaliana. New Phytol 213:1740–1754

    CAS  PubMed  Google Scholar 

  • van Rongen M, Bennett T, Ticchiarelli F, Leyser O (2019) Connective auxin transport contributes to strigolactone-mediated shoot branching control independent of the transcription factor BRC1. Plos Genet 15:e1008023

    PubMed  PubMed Central  Google Scholar 

  • Vandesompele J, Preter KD, Pattyn F, Poppe B, Roy NV, Paepe AD et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1–11

    Google Scholar 

  • Waldie T, Leyser O (2018) Cytokinin targets auxin transport to promote shoot branching. Plant Physiol 177:803–818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Liu Y, Li SS, Han GZ (2014) Origin of plant auxin biosynthesis in charophyte algae. Trends Plant Sci 19:741–743

    CAS  PubMed  Google Scholar 

  • Wen D, Sun S, Yang W, Zhang L, Liu S, Gong B et al (2019) Overexpression of S-nitrosoglutathione reductase alleviated iron-deficiency stress by regulating iron distribution and redox homeostasis. J Plant Physiol 237:1–11

    CAS  PubMed  Google Scholar 

  • Wightman F, Schneider EA, Thimann KV (1980) Hormonal factors controlling the initiation and development of lateral roots II. Effects of exogenous growth-factors on lateral root formation in pea roots. Physiol Plant 49:304–314

    CAS  Google Scholar 

  • Yan Y, Jing X, Tang H, Li X, Gong B, Shi Q (2019a) Using transcriptome to discover a novel melatonin-induced sodic alkaline stress resistant pathway in Solanum lycopersicum L. Plant Cell Physiol 60:2051–2064

    CAS  PubMed  Google Scholar 

  • Yan Y, Sun S, Zhao N, Yang W, Shi Q, Gong B (2019b) COMT1 overexpression resulting in increased melatonin biosynthesis contributes to the alleviation of carbendazim phytotoxicity and residues in tomato plants. Environ Pollut 252:51–61

    CAS  PubMed  Google Scholar 

  • Yuan Y, Mei L, Wu M, Wei W, Shan W, Gong Z et al (2018) SlARF10, an auxin response factor, is involved in chlorophyll and sugar accumulation during tomato fruit development. J Exp Bot 69:5507–5518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, To JP, Cheng CY, Schaller GE, Kieber JJ (2011) Type-A response regulators are required for proper root apical meristem function through post-transcriptional regulation of PIN auxin efflux carriers. Plant J 68:1–10

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China [31872943]; the Shandong Provincial Natural Science Foundation, China [ZR2019MC067]; the Shandong Province Modern Agricultural Technology System [SDAIT-05-05]; the Key Research and Development Program of Shandong Province [2017GNC13104].

Author information

Authors and Affiliations

Authors

Contributions

BG conceived of and designed the study. XY and XL conducted the experiments. FC performed qRT-PCR analysis. LZ and CS performed data analysis. BG wrote the manuscript. QS supervised and complemented the writing. All authors have read and approved this manuscript.

Corresponding author

Correspondence to Biao Gong.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Liu, X., Shi, Q. et al. Pruning length of lateral branches affects tomato growth and yields in relation to auxin-cytokinin crosstalt. Plant Growth Regul 92, 1–13 (2020). https://doi.org/10.1007/s10725-020-00615-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-020-00615-2

Keywords

Navigation