Skip to main content
Log in

Abnormal relaxation kinetics in D-mannitol glass confined by nanoporous alumina

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The relaxation kinetics and phase transformations of the confined D-mannitol (DM) in nanoporous alumina are studied in-situ using a high-precision nano-calorimeter. We find that the crystallization behavior can be suppressed when it is confined in nanopores smaller than 50 nm. The confined DM glass has a much smaller fragility (~76) than free DM glass (~125), confirming the enhanced glass-forming ability. It is intriguing that during isothermal annealing both the confined and free DM glasses relaxation kinetics experience two relaxation stages that have distinct activation energies. The relaxation activation energy of the confined glass is about 25%-29% smaller than the free glass, which is attributed to the reduced dimensionality. The abnormal kinetics observed in the confined DM glass open a new avenue for preparing stable glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. J. Song, M. Gao, W. Xu, J. T. Huo, J. Q. Wang, R. W. Li, W. H. Wang, and J. H. Perepezko, Acta Mater. 185, 38 (2020).

    Article  Google Scholar 

  2. Z. Fakhraai, and J. A. Forrest, Science 319, 600 (2008).

    Article  Google Scholar 

  3. L. Zhu, C. W. Brian, S. F. Swallen, P. T. Straus, M. D. Ediger, and L. Yu, Phys. Rev. Lett. 106, 256103 (2011).

    Article  ADS  Google Scholar 

  4. S. S. Jiang, K. F. Gan, Y. J. Huang, P. Xue, Z. L. Ning, J. F. Sun, and A. H. W. Ngan, Int. J. Plast. 125, 52 (2020).

    Article  Google Scholar 

  5. K. L. Ngai, S. Capaccioli, C. R. Cao, H. Y. Bai, and W. H. Wang, J. Non-Crystalline Solids 463, 85 (2017).

    Article  ADS  Google Scholar 

  6. L. D. Gelb, K. E. Gubbins, R. Radhakrishnan, and M. Sliwinska-Bartkowiak, Rep. Prog. Phys. 62, 1573 (1999).

    Article  ADS  Google Scholar 

  7. Q. Tang, W. Hu, and S. Napolitano, Phys. Rev. Lett. 112, 148306 (2014).

    Article  ADS  Google Scholar 

  8. S. Sohn, Y. Xie, Y. Jung, J. Schroers, and J. J. Cha, Nat. Commun. 8, 1980 (2017).

    Article  ADS  Google Scholar 

  9. H. Duran, M. Steinhart, H. J. Butt, and G. Floudas, Nano Lett. 11, 1671 (2011).

    Article  ADS  Google Scholar 

  10. X. Dai, H. Li, Z. Ren, T. P. Russell, S. Yan, and X. Sun, Macromolecules 51, 5732 (2018).

    Article  ADS  Google Scholar 

  11. J. Swenson, and J. Teixeira, J. Chem. Phys. 132, 014508 (2010).

    Article  ADS  Google Scholar 

  12. D. Richter, and M. Kruteva, Soft Matter 15, 7316 (2019).

    Article  ADS  Google Scholar 

  13. K. Chat, W. Tu, L. Laskowski, and K. Adrjanowicz, J. Phys. Chem. C 123, 13365 (2019).

    Article  Google Scholar 

  14. S. Ruan, W. Zhang, Y. Sun, M. D. Ediger, and L. Yu, J. Chem. Phys. 145, 064503 (2016).

    Article  ADS  Google Scholar 

  15. B. C. Saha, and F. M. Racine, Appl. Microbiol. Biotechnol. 89, 879 (2011).

    Article  Google Scholar 

  16. L. Yu, Adv. Drug Deliver. Rev. 48, 27 (2001).

    Article  Google Scholar 

  17. M. Zhu, J. Q. Wang, J. H. Perepezko, and L. Yu, J. Chem. Phys. 142, 244504 (2015).

    Article  ADS  Google Scholar 

  18. W. Tang, and J. H. Perepezko, J. Chem. Phys. 149, 074505 (2018).

    Article  ADS  Google Scholar 

  19. J. Q. Wang, Y. Shen, J. H. Perepezko, and M. D. Ediger, Acta Mater. 104, 25 (2016).

    Article  Google Scholar 

  20. J. Q. Wang, N. Chen, P. Liu, Z. Wang, D. V. Louzguine-Luzgin, M. W. Chen, and J. H. Perepezko, Acta Mater. 79, 30 (2014).

    Article  Google Scholar 

  21. R. Brüning, and K. Samwer, Phys. Rev. B 46, 11318 (1992).

    Article  ADS  Google Scholar 

  22. H. Tanaka, J. Non-Crystalline Solids 351, 678 (2005).

    Article  ADS  Google Scholar 

  23. L. Hu, and Y. Yue, J. Phys. Chem. C 113, 15001 (2009).

    Article  Google Scholar 

  24. L. Song, W. Xu, J. Huo, J. Q. Wang, X. Wang, and R. Li, Intermetallics 93, 101 (2018).

    Article  Google Scholar 

  25. L. Li, D. Zhou, D. Huang, and G. Xue, Macromolecules 47, 297 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Xu or Jun-Qiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Song, L., Li, A. et al. Abnormal relaxation kinetics in D-mannitol glass confined by nanoporous alumina. Sci. China Phys. Mech. Astron. 63, 276113 (2020). https://doi.org/10.1007/s11433-020-1535-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1535-3

Keywords

Navigation