Skip to main content
Log in

Prediction of explosive properties of newly synthesized amino nitroguanidine-based energetic complexes via density functional theory

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Density functional theory calculations were performed to explore four octahedral energetic complexes including [CoCl2 (ANQ)2], [Co (ANQ)2(H2O)2]2+, [CuCl2 (ANQ)2], and [Cu(NO3)2 (ANQ)2], (ANQ = amino nitroguanidine). In this work, an attempt has been made to present useful structural data in order to investigate and predict the explosive properties of these complexes. In this regard, interaction energy (IE), natural bond orbital (NBO), atoms in a molecule (AIM) as well as the three-dimensional Hirshfeld surface analysis and the two-dimensional fingerprint plots, charge transfers, HUMO-LUMO gap, oxygen balance (%OB) amounts, and molecular electrostatic potential (MEP) maps were utilized to assign intermolecular interactions, bond lengths, the nature of metal-ligand bonds, and energies in subject compounds. The results reveal that among the five applied levels of theory, interaction energies obtaining from M06-2X/Def2TZVP were in excellent compliance with the experiments. Additionally, the N⋯O interaction, oxygen balance, density, and HOMO–LUMO gap were the most contributing factors in assigning sensitivity and detonation properties. In general, the sensitivity and detonation properties are increased in the following order: ANQ < complex1 < complex3 < complex2 < complex4.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Badgujar D, Talawar M, Asthana S, Mahulikar P (2008) Advances in science and technology of modern energetic materials: an overview. J Hazard Mater 151:289–305

    Article  CAS  PubMed  Google Scholar 

  2. Klapötke TM (2007) High energy density materials. Springer, Berlin Heidelberg

    Book  Google Scholar 

  3. Wang SW, Yang L, Feng JL, Wu BD, Zhang JG, Zhang TL, Zhou ZN (2011) Synthesis, crystal structure, thermal decomposition, and sensitive properties of two novel energetic cadmium (II) complexes based on 4-amino-1, 2, 4-triazole. Z Anorg Allg Chem 637:2215–2222

    Article  CAS  Google Scholar 

  4. Jeong K, Jeon Y, Kwon S (2017) Assessment of various DFT, DFT-D, and MP2 methods for studying FOX-7 detonation properties. J Mol Model 23:250

    Article  PubMed  CAS  Google Scholar 

  5. Tao G-H, Parrish DA, Shreeve JM (2012) Nitrogen-rich 5-(1-methylhydrazinyl) tetrazole and its copper and silver complexes. Inorg Chem 51:5305–5312

    Article  CAS  PubMed  Google Scholar 

  6. Hofmann A (1866) XXIV.—on the synthesis of guanidine. J Chem Soc 19:249–255

    Article  Google Scholar 

  7. Berlinck RG, Burtoloso ACB, Kossuga MH (2008) The chemistry and biology of organic guanidine derivatives. Nat Prod Rep 25:919–954

    Article  CAS  PubMed  Google Scholar 

  8. Bondu S, Genta-Jouve G, Leirόs M, Vale C, Guigonis J-M, Botana LM, Thomas OP (2012) Additional bioactive guanidine alkaloids from the Mediterranean sponge Crambe crambe. RSC Adv 2:2828–2835

    Article  CAS  Google Scholar 

  9. Sączewski F, Balewski Ł (2013) Biological activities of guanidine compounds, 2008–2012 update. Expert Opin Ther Pat 23:965–995

    Article  PubMed  CAS  Google Scholar 

  10. Ishikawa T (2010) Guanidine chemistry. Chem Pharm Bull 58:1555–1564

    Article  CAS  PubMed  Google Scholar 

  11. Alonso-Moreno C, Antinolo A, Carrillo-Hermosilla F, Otero A (2014) Guanidines: from classical approaches to efficient catalytic syntheses. Chem Soc Rev 43:3406–3425

    Article  CAS  PubMed  Google Scholar 

  12. Garlets ZJ, Silvi M, Wolfe JP (2016) Synthesis of cyclic guanidines via silver-catalyzed intramolecular alkene hydroamination reactions of N-allylguanidines. Org Lett 18:2331–2334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Klapötke TM, Mieskes F, Stierstorfer J, Weyrauther M (2016) Studies on energetic salts based on (2, 4, 6-trinitrophenyl) guanidine. Propellants Explos Pyrotech 41:217–222

    Article  CAS  Google Scholar 

  14. Dippold A, Klapötke TM, Martin FA (2011) Synthesis and characterization of bis (triaminoguanidinium) 5, 5′-dinitrimino-3, 3′-azo-1H-1, 2, 4-triazolate–a novel insensitive energetic material. Z Anorg Allg Chem 637:1181–1193

    Article  CAS  Google Scholar 

  15. Klapötke TM (2017) Chemistry of high-energy materials. Walter de Gruyter GmbH & Co KG, Berlin

    Book  Google Scholar 

  16. Metelkina E, Novikova T, Berdonosova S, Berdonosov DY (2005) 2-Nitroguanidine derivatives: IX. Reaction of 1-amino-2-nitroguanidine with oxalic acid as a method of synthesis of 3 (5)-nitroamino-1, 2, 4-triazole-5 (3)-carboxylic acid and 5, 5′-bi (3-nitroamino-1, 2, 4-triazole) salts. Russ J Org Chem 41:440–443

    Article  CAS  Google Scholar 

  17. Fischer N, Joas M, Klapötke TM, Stierstorfer J (2013) Transition metal complexes of 3-amino-1-nitroguanidine as laser ignitible primary explosives: structures and properties. Inorg Chem 52:13791–13802

    Article  CAS  PubMed  Google Scholar 

  18. Lothrop WC, Handrick GR (1949) The relationship between performance and constitution of pure organic explosive compounds. Chem Rev 44:419–445

    Article  CAS  Google Scholar 

  19. Zhang J, He C, Parrish DA, Shreeve JM (2013) Nitramines with varying sensitivities: functionalized dipyrazolyl-N-nitromethanamines as energetic materials. Chem Eur J 19:8929–8936

    Article  CAS  PubMed  Google Scholar 

  20. Fischer D, Klapötke TM, Stierstorfer J (2014) Synthesis and characterization of diaminobisfuroxane. Eur J Inorg Chem 2014:5808–5811

    Article  CAS  Google Scholar 

  21. Guo T, Wang Z, Tang W, Wang W, Bi F, Wang B, Zhou Z, Meng Z, Ge Z (2018) A good balance between the energy density and sensitivity from assembly of bis (dinitromethyl) and bis (fluorodinitromethyl) with a single furazan ring. J Anal Appl Pyrolysis 134:218–230

    Article  CAS  Google Scholar 

  22. Bader R (1990) Atoms in molecule. A Quantum Theory

  23. Wiberg KB (1968) Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24:1083–1096

    Article  CAS  Google Scholar 

  24. Fukui K, Yonezawa T, Shingu H (1952) A molecular orbital theory of reactivity in aromatic hydrocarbons. J Chem Phys 20:722–725

    Article  CAS  Google Scholar 

  25. Parr RG, Zhou Z (1993) Absolute hardness: unifying concept for identifying shells and subshells in nuclei, atoms, molecules, and metallic clusters. Acc Chem Res 26:256–258

    Article  CAS  Google Scholar 

  26. Ayers PW, Parr RG, Pearson RG (2006) Elucidating the hard/soft acid/base principle: a perspective based on half-reactions. J Chem Phys 124:194107

    Article  PubMed  CAS  Google Scholar 

  27. Aihara J-i (1999) Reduced HOMO−LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. J Phys Chem A 103:7487–7495

    Article  CAS  Google Scholar 

  28. Aihara J-i (2000) Correlation found between the HOMO–LUMO energy separation and the chemical reactivity at the most reactive site for isolated-pentagon isomers of fullerenes. Phys Chem Chem Phys 2:3121–3125

    Article  CAS  Google Scholar 

  29. Wolff S, Grimwood D, McKinnon J, Turner M, Jayatilaka D, Spackman M (2012) Crystal explorer. The University of Western Australia Perth, Crawley

    Google Scholar 

  30. Spackman MA, McKinnon JJ (2002) Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 4:378–392

    Article  CAS  Google Scholar 

  31. Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R (1987) Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J Chem Soc Perkin Trans 2:S1–S19

    Article  Google Scholar 

  32. Bitzer RS, Visentin LC, Hörner M, Nascimento MA, Filgueiras CA (2017) On the molecular and supramolecular properties of N, N′-disubstituted iminoisoindolines: synthesis, spectroscopy, X-ray structure and Hirshfeld surface analyses, and DFT calculations of two (E)-N, N′-bis (aryl) iminoisoindolines (aryl= 2-tert-butylphenyl or perfluorophenyl). J Mol Struct 1130:165–173

    Article  CAS  Google Scholar 

  33. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993). J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  34. Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2:364–382

    Article  PubMed  CAS  Google Scholar 

  35. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101

    Article  CAS  PubMed  Google Scholar 

  36. Zhao Y, Truhlar DG (2006) Density functional for spectroscopy: no long-range self-interaction error, good performance for Rydberg and charge-transfer states, and better performance on average than B3LYP for ground states. J Phys Chem A 110:13126–13130

    Article  CAS  PubMed  Google Scholar 

  37. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  38. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  39. Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

  40. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  41. Ehlers A, Böhme M, Dapprich S, Gobbi A, Höllwarth A, Jonas V, Köhler K, Stegmann R, Veldkamp A, Frenking G (1993) A set of f-polarization functions for pseudo-potential basis sets of the transition metals Sc-Cu, Y-Ag and La-Au. Chem Phys Lett 208:111–114

    Article  CAS  Google Scholar 

  42. Höllwarth A, Böhme M, Dapprich S, Ehlers A, Gobbi A, Jonas V, Köhler K, Stegmann R, Veldkamp A, Frenking G (1993) A set of d-polarization functions for pseudo-potential basis sets of the main group elements Al-Bi and f-type polarization functions for Zn, Cd, Hg. Chem Phys Lett 208:237–240

    Article  Google Scholar 

  43. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  PubMed  Google Scholar 

  44. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  CAS  PubMed  Google Scholar 

  45. Glendening E, Reed A, Carpenter J, Weinhold F (1998), NBO Version 3.1, There is no corresponding record for this reference

  46. Biegler-könig FW, Bader RF, Tang TH (1982) Calculation of the average properties of atoms in molecules. II. J Comput Chem 3:317–328

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank anonymous reviewers for helpful comments and our colleagues from the Malek-Ashtar University of Technology Shahin Shahr, who provide valuable insights.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mahdavi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roohzadeh, R., Mahdavi, M. Prediction of explosive properties of newly synthesized amino nitroguanidine-based energetic complexes via density functional theory. J Mol Model 26, 104 (2020). https://doi.org/10.1007/s00894-020-04377-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04377-6

Keywords

Navigation