Skip to main content
Log in

An improved constrained simultaneous iterative reconstruction technique for ionospheric tomography

  • Review Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Global Navigation Satellite System (GNSS) is now widely used for continuous ionospheric observations. Three-dimensional computerized ionospheric tomography (3DCIT) is an important tool for the reconstruction of electron density distributions in the ionosphere through effective use of the GNSS data. More specifically, the 3DCIT technique is able to resolve the three-dimensional electron density distributions over the reconstructed area based on the GNSS slant total electron content (STEC) observations. We present an Improved Constrained Simultaneous Iterative Reconstruction Technique (ICSIRT) algorithm that differs from the traditional ionospheric tomography methods in 3 ways. First, the ICSIRT computes the electron density corrections based on the product of the intercept and electron density within voxels so that the assignment of corrections at different heights becomes more reasonable. Second, an Inverse Distance Weighted (IDW) interpolation is used to restrict the electron density values in the voxels not traversed by GNSS rays, thereby ensuring the smoothness of the reconstructed region. Also, to improve the reconstruction accuracy around the HmF2 (the peak height of the F2 layer) altitude, a multiresolution grid is adopted in the vertical direction, with a 10-km resolution from 200 to 420 km and a 50-km resolution at other altitudes. The new algorithm has been applied to the GNSS data over the European and North American regions in different case studies that involve different seasonal conditions as well as a major storm. In the European region experiment, reconstruction results show that the new ICSIRT algorithm can effectively improve the reconstruction of the GNSS data. The electron density profiles retrieved from ICSIRT are much closer to the ionosonde observations than those from its predecessor, namely, the Constrained Simultaneous Iteration Reconstruction Technique (CSIRT). The reconstruction accuracy is significantly improved. In the North American region experiment, the electron density profiles in ICSIRT results show better agreement with incoherent scatter radar observations than CSIRT, even for the topside profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Andreeva ES, Galinov AV, Kunitsyn VE, Melnichenko YA, Tereshchenko ED, Filimonov MA, Chernyakov SM (1990) Radiotomographic reconstruction of ionization dip in the plasma near the Earth. JETP Lett 52(3):145–148

    Google Scholar 

  • Austen JR, Franke SJ, Liu CH (1988) Ionospheric imaging using computerized tomography. Radio Sci 23(3):299–307

    Article  Google Scholar 

  • Bruyninx C, Legrand J, Fabian A, Pottiaux E (2019) GNSS metadata and data validation in the EUREF permanent network. GPS Solut 23:106. https://doi.org/10.1007/s10291-019-0880-9

    Article  Google Scholar 

  • Bust GS, Mitchell CN (2008) History, current state, and future directions of ionospheric imaging. Rev Geophys 46(RG1003):1–23

    Google Scholar 

  • Chasovitin YK (1998) Russian standard model of ionosphere (SMI). In: Proceedings of COST251, pp 161–172

  • Cherniak I, Zakharenkova I (2016) NeQuick and IRI-Plas model performance on topside electron content representation: spaceborne GPS measurements. Radio Sci 51(6):752–766

    Article  Google Scholar 

  • Debao W, Xiao Z, Yangjin T, Guangsheng Z, Min Z, Rusong L (2015) GPS-based ionospheric tomography with a constrained adaptive simultaneous algebraic reconstruction technique. J Earth Syst Sci 124(2):283–289

    Article  Google Scholar 

  • ElArini MB, Conker RS, Albertson TW, Reagan JK, Klobuchar JA, Doherty PH (1994) Comparison of real-time ionospheric algorithms for a GPS wide-area augmentation system (WAAS). Navigation 41(4):393–414

    Article  Google Scholar 

  • Galkin IA, Reinisch BW, Huang X, Bilitza D (2012) Assimilation of GIRO data into a real-time IRI. Radio Sci. https://doi.org/10.1029/2011rs004952

    Article  Google Scholar 

  • Ge L, Chang HC, Janssen V, Rizos C (2003) Integration of GPS, radar interferometry and GIS for ground deformation monitoring. In: Proceedings of 2003 international symposium on GPS/GNSS, Toyko, Japan, pp 465–472

  • Gordon R, Bender R, Herman GT (1970) Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J Theor Biol 29(3):471I–1477I

    Article  Google Scholar 

  • Gulyaeva TL (2002) The ionosphere-plasmasphere model software for ISO. Acta Geod Geophys Hunger 37(3):143–152

    Article  Google Scholar 

  • Hobiger T, Kondo T, Koyama Y (2008) Constrained simultaneous algebraic reconstruction technique (C-SART)—a new and simple algorithm applied to ionospheric tomography. Earth Planets Space 60(7):727–735

    Article  Google Scholar 

  • Huang CR, Liu CH, Yeh KC, Lin KH, Tsai WH, Yeh HC, Liu JY (1999) A study of tomographically reconstructed ionospheric images during a solar eclipse. J Geophys Res Space Phys 104(A1):79–94

    Article  Google Scholar 

  • Jin R, Jin S, Feng G (2012) M_DCB: matlab code for estimating GNSS satellite and receiver differential code biases. GPS Solut 16(4):541–548. https://doi.org/10.1007/s10291-012-0279-3

    Article  Google Scholar 

  • Kersley L, Heaton JAT, Pryse SE, Raymund TD (1993) Experimental ionospheric tomography with ionosonde input and EISCAT verification. Ann Geophys Germany 11:1064–1074

    Google Scholar 

  • Kong J, Yao Y, Liu L, Zhai C, Wang Z (2016) A new computerized ionosphere tomography model using the mapping function and an application to the study of seismic-ionosphere disturbance. J Geodesy 90(8):741–755

    Article  Google Scholar 

  • Kunitsyn VE, Andreeva ES, Razinkov OG, Tereshchenko ED (1994a) Phase and phase-difference ionospheric radio tomography. Int J Image Syst Technol 5(2):128–140

    Article  Google Scholar 

  • Kunitsyn VE, Andreeva ES, Tereshchenko ED, Khudukon BZ, Nygren T (1994b) Investigations of the ionosphere by satellite radiotomography. Int J Image Syst Technol 5(2):112–127

    Article  Google Scholar 

  • Kunitsyn VE, Andreeva ES, Popov AY, Razinkov OG (1995) Methods and algorithms of ray radiotomography for ionospheric research. Ann Geophys 13(12):1263–1276

    Google Scholar 

  • Kunitsyn VE, Andreeva ES, Razinkov OG (1997) Possibilities of the near-space environment radio tomography. Radio Sci 32(5):1953–1963

    Article  Google Scholar 

  • Liu S, Wang J, Gao J (2010) Inversion of ionospheric electron density based on a constrained simultaneous iteration reconstruction technique. IEEE TGRS 48(6):2455–2459

    Google Scholar 

  • Markkanen M, Lehtinen M, Nygrén T, Pirttilä J, Henelius P, Vilenius E, Tereshchenko ED, Khudukon BZ (1995) Bayesian approach to satellite radiotomography with applications in the Scandinavian sector. ISME J 8(11):2280–2289

    Google Scholar 

  • Nava B, Coisson P, Radicella SM (2008) A new version of the NeQuick ionosphere electron density model. J Atmos Sol Terr Phy 70(15):1856–1862

    Article  Google Scholar 

  • Norberg J, Roininen L, Vierinen J, Amm O, McKay-Bukowski D, Lehtinen M (2015) Ionospheric tomography in Bayesian framework with Gaussian Markov random field priors. Radio Sci 50(2):138–152

    Article  Google Scholar 

  • Prasad N, Sarma AD (2007) Preliminary analysis of grid ionospheric vertical error for GAGAN. GPS Solut 11(4):281–288

    Article  Google Scholar 

  • Pryse SE, Kersley L, Rice DL, Russell CD, Walker IK (1993) Tomographic imaging of the ionospheric mid-latitude trough. Ann Geophys 11(2):144–149

    Google Scholar 

  • Pryse SE, Kersley L, Williams MJ, Walker IK, Willson CA (1997) Tomographic imaging of the polar-cap ionosphere over Svalbard. J Atmos Sol Terr Phy 59(15):1953–1959

    Article  Google Scholar 

  • Raymond TD, Franke SJ, Yeh KC (1994) Ionospheric tomography: its limitations and reconstruction methods. J Atmos Terr Phys 56(5):637–653

    Article  Google Scholar 

  • Raymund TD, Austen JR, Franke SJ, Liu CH, Klobuchar JA, Stalker J (1990) Application of computerized tomography to the investigation of ionospheric structures. Radio Sci 25(05):771–789

    Article  Google Scholar 

  • Reinisch BW, Galkin IA (2011) Global ionospheric radio observatory (GIRO). Earth Planets Space 63(4):377–381. https://doi.org/10.5047/eps.2011.03.001

    Article  Google Scholar 

  • Reinisch BW, Huang X (2001) Deducing topside profiles and total electron content from bottomside ionograms. Adv Space Res 27(1):23–30. https://doi.org/10.1016/S0273-1177(00)00136-8

    Article  Google Scholar 

  • Shim JS, Jee G, Scherliess L (2017) Climatology of plasmaspheric total electron content obtained from Jason 1 satellite. J Geophys Res Space Phys 122(2):1611–1623

    Article  Google Scholar 

  • Wan X, Zhang F, Chu Q, Zhang K, Sun F, Yuan B, Liu Z (2011) Three-dimensional reconstruction using an adaptive simultaneous algebraic reconstruction technique in electron tomography. J Struct Biol 175(3):277–287

    Article  Google Scholar 

  • Wen D, Yuan Y, Ou J, Huo X, Zhang K (2007) Three-dimensional ionospheric tomography by an improved algebraic reconstruction technique. GPS Solut 11(4):251–258

    Article  Google Scholar 

  • Wen D, Yuan Y, Ou J, Zhang K, Liu K (2008) A hybrid reconstruction algorithm for 3-D ionospheric tomography. IEEE Trans Geosci Remote 46(6):1733–1739. https://doi.org/10.1109/TGRS.2008.916466

    Article  Google Scholar 

  • Wen D, Liu S, Tang P (2010) Tomographic reconstruction of ionospheric electron density based on constrained algebraic reconstruction technique. GPS Solut 14(4):375–380. https://doi.org/10.1007/s10291-010-0161-0

    Article  Google Scholar 

  • Wen D, Wang Y, Norman R (2012) A new two-step algorithm for ionospheric tomography solution. GPS Solut 16(1):89–94. https://doi.org/10.1007/s10291-011-0211-2

    Article  Google Scholar 

  • Yao Y, Tang J, Chen P, Zhang S, Chen J (2014) An improved iterative algorithm for 3-D ionospheric tomography reconstruction. IEEE Trans Geosci Remote 52(8):4696–4706

    Article  Google Scholar 

  • Yao Y, Zhai C, Kong J, Zhao Q, Zhao C (2018) A modified three-dimensional ionospheric tomography algorithm with side rays. GPS Solut 22(4):107

    Article  Google Scholar 

  • Zhang M, Liu L, Wan W, Ning B (2017) Comparison of the observed topside ionospheric and plasmaspheric electron content derived from the COSMIC podTEC measurements with the IRI_Plas model results. Adv Space Res 60(2):222–227

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank EUREF Permanent GNSS Network (EPN) for providing the Global Navigation Satellite System (GNSS) data and Global Ionospheric Radio Observatory (GIRO) for providing the ionosonde data. We acknowledge Telecommunications/ICT for Development (T/ICT4D) Laboratory of the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, for providing NeQuick2 model. The GNSS data are obtained from ftp://epncb.oma.be/, and the ionosonde data are obtained from ftp://ngdc.noaa.gov/ionosonde/data/. We also thank MIT Haystack Observatory for providing incoherent scatter radar data. Millstone Hill ISR data can be download from http://cedar.openmadrigal.org. Radar observations and analysis at Millstone Hill and the Madrigal distributed database system are supported by the US National Science Foundation Cooperative Agreement AGS-1762141 with the Massachusetts Institute of Technology. This research was supported by (1) National Natural Science Foundation Innovation Research Group Project (Grant NO. 41721003); (2) National Natural Fund of China (41604002) Open Research Fund of State Key; (3) Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University (18P02); (4) Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University (170208)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changzhi Zhai or Jian Kong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Zhai, C., Kong, J. et al. An improved constrained simultaneous iterative reconstruction technique for ionospheric tomography. GPS Solut 24, 68 (2020). https://doi.org/10.1007/s10291-020-00981-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-020-00981-4

Keywords

Navigation