Skip to main content
Log in

Experimental investigation on the grain-scale compression behavior of loose wet granular material

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The behavior of model granular materials (glass beads) wetted by a small quantity of liquid forming capillary bridges is studied by one-dimensional compression test combined with X-ray computed tomography (XRCT) observation. Special attention is paid to obtain very loose initial states (initial void ratio of about 2.30) stabilized by capillary cohesion. XRCT-based analyses involve spherical particle detection adapted to relatively low-resolution images, which enable heterogeneities to be visualized and microstructural information to be collected. This study on an ideal material provides an insight into the macroscopic compression behavior of wet granular materials based on the microstructural change, such as pore distance distribution, coordination number of contacts, coordination number of neighbors and number of contacts per grain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

a :

Size of standard volume

b :

Size of extended volume

\( \left\langle d \right\rangle \) :

Average diameter

d min :

Minimum diameter

d max :

Maximum diameter

e 0 :

Initial void ratio

e :

Void ratio

EV:

Extended volume

f(r):

Signature curve

Φ 0 :

Initial solid fraction

g(r):

Radial distribution function

i, j, k :

Voxel indices

iC, jC, kC :

Center position of detected sphere

I(i, j, k):

Intensity at voxel (i, j, k)

∇I(i, j, k):

Gradient vector at voxel (i, j, k)

N :

Number of particles

N C :

Number of pairs in contacts

p(r):

Average number density of particles

q(i, j, k):

Vector from (iC, jC, kC) to voxel (i, j, k)

r :

Radii of particles/radial distance

SV:

Standard volume

Si:

Step of scan (S1, S2, S3, S4)

z :

Total coordination number

z(h):

Coordination number of close neighbors

References

  1. Agnolin I, Roux J-N (2007) Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks. Phys Rev E 76:061302. https://doi.org/10.1103/physreve.76.061302

    Article  MathSciNet  Google Scholar 

  2. Al-Raoush R (2007) Microstructure characterization of granular materials. Phys A Stat Mech Appl 377:545–558. https://doi.org/10.1016/j.physa.2006.11.090

    Article  Google Scholar 

  3. Al-Raoush RI, Willson CS (2005) Extraction of physically realistic pore network properties from three-dimensional synchrotron X-ray microtomography images of unconsolidated porous media systems. J Hydrol 300:44–64. https://doi.org/10.1016/j.jhydrol.2004.05.005

    Article  Google Scholar 

  4. Andò E, Bésuelle P, Hall Sa et al (2012) Experimental micromechanics: grain-scale observation of sand deformation. Géotech Lett 2:107–112. https://doi.org/10.1680/geolett.12.00027

    Article  Google Scholar 

  5. Aste T (2005) Variations around disordered close packing. J Phys Condens Matter 17:S2361–S2390. https://doi.org/10.1088/0953-8984/17/24/001

    Article  Google Scholar 

  6. Aste T, Saadatfar M, Sakellariou A, Senden TJ (2004) Investigating the geometrical structure of disordered sphere packings. Phys A Stat Mech Appl 339:16–23. https://doi.org/10.1016/j.physa.2004.03.034

    Article  MathSciNet  Google Scholar 

  7. Aste T, Saadatfar M, Senden T (2005) Geometrical structure of disordered sphere packings. Phys Rev E 71:1–15. https://doi.org/10.1103/PhysRevE.71.061302

    Article  Google Scholar 

  8. Aste T, Saadatfar M, Senden TJ (2006) Local and global relations between the number of contacts and density in monodisperse sphere packs. J Stat Mech Theory Exp 2006:P07010. https://doi.org/10.1088/1742-5468/2006/07/P07010

    Article  MATH  Google Scholar 

  9. Bruchon J-F, Pereira J-M, Vandamme M et al (2013) Full 3D investigation and characterisation of capillary collapse of a loose unsaturated sand using X-ray CT. Granul Matter 15:783–800. https://doi.org/10.1007/s10035-013-0452-6

    Article  Google Scholar 

  10. Bruchon J-F, Pereira J-M, Vandamme M et al (2013) X-ray microtomography characterisation of the changes in statistical homogeneity of an unsaturated sand during imbibition. Géotech Lett 3:84–88. https://doi.org/10.1680/geolett.13.00013

    Article  Google Scholar 

  11. Chalak C, Chareyre B, Nikooee E, Darve F (2017) Partially saturated media: from DEM simulation to thermodynamic interpretation. Eur J Environ Civ Eng 21:798–820. https://doi.org/10.1080/19648189.2016.1164087

    Article  Google Scholar 

  12. Dadda A, Geindreau C, Emeriault F et al (2019) Characterization of contact properties in biocemented sand using 3D X-ray micro-tomography. Acta Geotech 14:597–613. https://doi.org/10.1007/s11440-018-0744-4

    Article  Google Scholar 

  13. Delenne J-Y, El Youssoufi MS, Cherblanc F, Bénet J-C (2004) Mechanical behaviour and failure of cohesive granular materials. Int J Numer Anal Methods Geomech 28:1577–1594. https://doi.org/10.1002/nag.401

    Article  MATH  Google Scholar 

  14. Delenne J-Y, Soulié F, El Youssoufi MS, Radjai F (2011) From liquid to solid bonding in cohesive granular media. Mech Mater 43:529–537. https://doi.org/10.1016/j.mechmat.2011.06.008

    Article  Google Scholar 

  15. Delenne J-Y, Richefeu V, Radjai F (2015) Liquid clustering and capillary pressure in granular media. J Fluid Mech 762:R5-1–R5-10. https://doi.org/10.1017/jfm.2014.676

    Article  MathSciNet  Google Scholar 

  16. Ding W, Howard AJ, Peri MDM, Cetinkaya C (2007) Rolling resistance moment of microspheres on surfaces: contact measurements. Philos Mag 87:5685–5696. https://doi.org/10.1080/14786430701708356

    Article  Google Scholar 

  17. Donev A, Torquato S, Stillinger FH (2005) Pair correlation function characteristics of nearly jammed disordered and ordered hard-sphere packings. Phys Rev E Stat Nonlinear Soft Matter Phys 71:1–14. https://doi.org/10.1103/PhysRevE.71.011105

    Article  MathSciNet  Google Scholar 

  18. Farber L, Tardos G, Michaels JN (2003) Use of X-ray tomography to study the porosity and morphology of granules. Powder Technol 132:57–63. https://doi.org/10.1016/S0032-5910(03)00043-3

    Article  Google Scholar 

  19. Fournier Z, Geromichalos D, Herminghaus S et al (2005) Mechanical properties of wet granular materials. J Phys Condens Matter 17:477–502. https://doi.org/10.1088/0953-8984/17/9/013

    Article  Google Scholar 

  20. Fu X, Dutt M, Bentham AC et al (2006) Investigation of particle packing in model pharmaceutical powders using X-ray microtomography and discrete element method. Powder Technol 167:134–140. https://doi.org/10.1016/j.powtec.2006.06.011

    Article  Google Scholar 

  21. Gilabert F, Roux J-N, Castellanos A (2007) Computer simulation of model cohesive powders: influence of assembling procedure and contact laws on low consolidation states. Phys Rev E 75:011303. https://doi.org/10.1103/PhysRevE.75.011303

    Article  MathSciNet  Google Scholar 

  22. Gilabert F, Roux J-N, Castellanos A (2008) Computer simulation of model cohesive powders: plastic consolidation, structural changes, and elasticity under isotropic loads. Phys Rev E 78:031305. https://doi.org/10.1103/PhysRevE.78.031305

    Article  Google Scholar 

  23. Golchert DJ, Moreno R, Ghadiri M et al (2004) Application of X-ray microtomography to numerical simulations of agglomerate breakage by distinct element method. Adv Powder Technol 15:447–457. https://doi.org/10.1163/1568552041270554

    Article  Google Scholar 

  24. Illingworth J, Kittler J (1987) The adaptive hough transform. IEEE Trans Pattern Anal Mach Intell PAMI 9:690–698. https://doi.org/10.1109/tpami.1987.4767964

    Article  Google Scholar 

  25. Jiang M, Hu H, Liu F (2012) Summary of collapsible behaviour of artificially structured loess in oedometer and triaxial wetting tests. Can Geotech J 1157:1147–1157. https://doi.org/10.1139/T2012-075

    Article  Google Scholar 

  26. Kadau D, Bartels G, Brendel L, Wolf DE (2003) Pore stabilization in cohesive granular systems. Phase Transit 76:315–331. https://doi.org/10.1080/0141159021000051460

    Article  Google Scholar 

  27. Khaddour G (2005) Multi-scale characterization of the hydro-mechanical behavior of unsaturated sand: water retention and triaxial responses. Université Grenoble Alpes, France

    Google Scholar 

  28. Khaddour G, Riedel I, Andò E et al (2018) Grain-scale characterization of water retention behaviour of sand using X-ray CT. Acta Geotech 13:497–512. https://doi.org/10.1007/s11440-018-0628-7

    Article  Google Scholar 

  29. Khamseh S, Roux J-N, Chevoir F (2015) Flow of wet granular materials: a numerical study. Phys Rev E 92:022201–022219. https://doi.org/10.1103/PhysRevE.92.022201

    Article  Google Scholar 

  30. Lai Z, Chen Q (2019) Reconstructing granular particles from X-ray computed tomography using the TWS machine learning tool and the level set method. Acta Geotech. https://doi.org/10.1007/s11440-018-0759-x

    Article  Google Scholar 

  31. Lame O, Bellet D, Di Michiel M, Bouvard D (2003) In situ microtomography investigation of metal powder compacts during sintering. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 200:287–294. https://doi.org/10.1016/S0168-583X(02)01690-7

    Article  Google Scholar 

  32. Marmottant A, Salvo L, Martin CL, Mortensen A (2008) Coordination measurements in compacted NaCl irregular powders using X-ray microtomography. J Eur Ceram Soc 28:2441–2449. https://doi.org/10.1016/j.jeurceramsoc.2008.03.041

    Article  Google Scholar 

  33. Mason TG, Levine AJ, Ertaş D, Halsey TC (1999) Critical angle of wet sandpiles. Phys Rev E 60:R5044–R5047

    Article  Google Scholar 

  34. Melnikov K, Wittel FK, Herrmann HJ (2016) Micro-mechanical failure analysis of wet granular matter. Acta Geotech 11:539–548

    Article  Google Scholar 

  35. Mitarai N, Nori F (2006) Wet granular materials. Adv Phys 00:1–50

    Article  Google Scholar 

  36. Mitchell JK, Soga K (1976) Fundamentals of soil behavior. Wiley, London

    Google Scholar 

  37. Moreno-Atanasio R, Williams RA, Jia X (2010) Combining X-ray microtomography with computer simulation for analysis of granular and porous materials. Particuology 8:81–99. https://doi.org/10.1016/j.partic.2010.01.001

    Article  Google Scholar 

  38. Moscariello M, Cuomo S, Salager S (2018) Capillary collapse of loose pyroclastic unsaturated sands characterized at grain scale. Acta Geotech 13:117–133. https://doi.org/10.1007/s11440-017-0603-8

    Article  Google Scholar 

  39. Munõz-Castelblanco J, Delage P, Pereira J-M, Cui YJ (2011) Some aspects of the compression and collapse behaviour of an unsaturated natural loess. Géotech Lett 1:17–22. https://doi.org/10.1680/geolett.11.00003

    Article  Google Scholar 

  40. Newitt DM, Conway-Jones JM (1958) A contribution to the theory and practice of granulation. Trans Inst Chem Eng 36:422

    Google Scholar 

  41. Peng T, Balijepalli A, Gupta SK, LeBrun T (2007) Algorithms for on-line monitoring of micro spheres in an optical tweezers-based assembly cell. J Comput Inf Sci Eng 7:330. https://doi.org/10.1115/1.2795306

    Article  Google Scholar 

  42. Pierrat P, Caram HS (1997) Tensile strength of wet granular materials. Powder Technol 91:83–93. https://doi.org/10.1016/S0032-5910(96)03179-8

    Article  Google Scholar 

  43. Richefeu V, Radjaï F, El Youssoufi MS (2006) Stress transmission in wet granular materials. Eur Phys J E 21:359–369

    Article  Google Scholar 

  44. Richefeu V, El Youssoufi MS, Azéma E, Radjaï F (2009) Force transmission in dry and wet granular media. Powder Technol 190:258–263. https://doi.org/10.1016/j.powtec.2008.04.069

    Article  Google Scholar 

  45. Ridler TW, Calvard S (1978) Picture thresholding using an iterative selection method. IEEE Trans Syst Man Cybern 8:630–632. https://doi.org/10.1109/TSMC.1978.4310039

    Article  Google Scholar 

  46. Rognon PG, Roux J-N, Wolf D et al (2006) Rheophysics of cohesive granular materials. Europhys Lett 74:644–650. https://doi.org/10.1209/epl/i2005-10578-y

    Article  Google Scholar 

  47. Santamarina JC (2001) Soil behavior at the microscale: particle forces. In: Ladd CC (ed) Soil behavior and soft ground construction. MIT Press, Cambridge, pp 1–32

    Google Scholar 

  48. Scheel M, Seemann R, Brinkmann M et al (2008) Morphological clues to wet granular pile stability. Nat Mater 7:189

    Article  Google Scholar 

  49. Scholtès L, Chareyre B, Nicot F, Darve F (2009) Micromechanics of granular materials with capillary effects. Int J Eng Sci 47:1460–1471. https://doi.org/10.1016/j.ijengsci.2009.10.003

    Article  MathSciNet  MATH  Google Scholar 

  50. Sweijen T, Nikooee E, Hassanizadeh SM, Chareyre B (2016) The effects of swelling and porosity change on capillarity: DEM coupled with a pore-unit assembly method. Transp Porous Media 113:207–226. https://doi.org/10.1007/s11242-016-0689-8

    Article  MathSciNet  Google Scholar 

  51. Sweijen T, Chareyre B, Hassanizadeh SM, Karadimitriou NK (2017) Grain-scale modelling of swelling granular materials; application to super absorbent polymers. Powder Technol 318:411–422. https://doi.org/10.1016/j.powtec.2017.06.015

    Article  Google Scholar 

  52. Tang A-M, Cui Y-J, Eslami J, Défossez P (2009) Analysing the form of the confined uniaxial compression curve of various soils. Geoderma 148:282–290. https://doi.org/10.1016/j.geoderma.2008.10.012

    Article  Google Scholar 

  53. Tengattini A, Andò E (2015) Kalisphera: an analytical tool to reproduce the partial volume effect of spheres imaged in 3D. Meas Sci Technol 26:095606. https://doi.org/10.1088/0957-0233/26/9/095606

    Article  Google Scholar 

  54. Than V-D, Khamseh S, Tang A-M et al (2016) Basic mechanical properties of wet granular materials: a DEM study. J Eng Mech. https://doi.org/10.1061/(asce)em.1943-7889.0001043

    Article  Google Scholar 

  55. Torquato S (2002) Random heterogeneous materials: microstructure and macroscopic properties. Springer, New York

    Book  Google Scholar 

  56. Wang Y-H, Leung S-C (2008) A particulate-scale investigation of cemented sand behavior. Can Geotech J 45:29–44. https://doi.org/10.1139/T07-070

    Article  Google Scholar 

  57. Wang YH, Leung SC (2008) Characterization of cemented sand by experimental and numerical investigations. J Geotech Geoenviron Eng 134:992–1004

    Article  Google Scholar 

  58. Wang J-P, Li X, Yu H-S (2018) A micro–macro investigation of the capillary strengthening effect in wet granular materials. Acta Geotech. https://doi.org/10.1007/s11440-017-0619-0

    Article  Google Scholar 

  59. Wang JP, Lambert P, De Kock T et al (2019) Investigation of the effect of specific interfacial area on strength of unsaturated granular materials by X-ray tomography. Acta Geotech 1:5. https://doi.org/10.1007/s11440-019-00765-2

    Article  Google Scholar 

  60. Wiebicke M, Andò E, Herle I, Viggiani G (2017) On the metrology of interparticle contacts in sand from X-ray tomography images. Meas Sci Technol 28:124007

    Article  Google Scholar 

  61. Williams RA, Jia X (2003) Tomographic imaging of particulate systems. Adv Powder Technol 14:1–16. https://doi.org/10.1163/156855203762469867

    Article  Google Scholar 

  62. Wood DM (1990) Soil behaviour and critical state soil mechanics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  63. Xie L, Cianciolo RE, Hulette B et al (2012) Magnetic resonance histology of age-related nephropathy in the Sprague Dawley rat. Toxicol Pathol 40:764–778. https://doi.org/10.1177/0192623312441408

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of the first author’s PhD thesis funded by the Ministry of Education and Training of Vietnam. The authors are grateful to Dr. Michel Bornert (Laboratoire Navier) for his useful suggestions and Mr. Jean-Marc Plessier (Laboratoire Navier) for the scanning electronic microscopic image of a glass bead.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anh Minh Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Than, VD., Aimedieu, P., Pereira, JM. et al. Experimental investigation on the grain-scale compression behavior of loose wet granular material. Acta Geotech. 15, 1039–1055 (2020). https://doi.org/10.1007/s11440-019-00856-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-019-00856-0

Keywords

Navigation