Skip to main content

Advertisement

Log in

Organic acids combined with Fe-chelate improves ferric nutrition in tomato grown in calcisol soil

Ácidos Orgánicos Combinado con Quelato Férrico Mejoran la Nutrición Férrica en Tomate Cultivado en Suelo Calcisol

  • Original Paper
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

Plants developed in calcisol soils have limitations in iron nutrition, so exogenous applications of organic acids plus iron chelate can be an alternative. With the objective of knowing the answer of adding organic acids in the fertilizer solution plus a ferric chelate on the characteristics of the ferric nutrition of tomato plants developed in the calcisol soil the present experiment was established. We conducted the experiment in two stages, in the first stage studied different concentration of some organic acids: citric acid (CA), oxalic acid (OA), salicylic acid (SA), and humic complexes (HCs) combined with a FeEDDHA iron chelate, we included treatment control FeEDTA and FeEDDHA and treatment without iron in the fertilizer solution. In the second stage, we compared the best concentrations of organic acids in combination with FeEDTA iron chelate; we used to treatment control FeEDTA and FeEDDHA, and a control treatment without iron in the fertilizer solution. The best concentrations were CA 10−4 M, OA 10−4 M, SA 10−5 M, and HC 0.4 ml l−1. In the second stage, the addition of CA+FeEDTA and HC+FeEDTA increased SPAD units, chlorophyll and vitamin C contents and fruit quality improved. An increase content of Fe, Zn, and Mn in leaves was presented with treatment CA+FeEDTA and HC+FeEDTA. Addition of CA+FeEDTA improved the oxidation-reduction potential, pH and electrical conductivity (EC) of plant leachates, followed by HC+FeEDTA. Applications of CA and HC in the nutrient solution in combination with EDTA-type chelate improved the characteristics of the ferric nutrition of tomato plants developed in calcisol soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arizmendi GN, Rivera OP, De la Cruz SF, Castro MB, De la Garza RF (2011) Leaching of chelated iron in calcareous soils. TERRA Latinoamericana 29(3):231–237

    Google Scholar 

  • Association of Official Analytical Chemists (AOAC) (1990) Official Methods of Analysis. Association of Official Analytical Chemists, 15th edn. Arlington, Virginia, p 384

    Google Scholar 

  • Atherton JG, Rudisch J (1986) The tomato crop. Chapman and Hall. London, New York, pp 281–334

    Book  Google Scholar 

  • Balzarini M, Di Rienzo A, Cazanoves F, González I, Tablada M, Guzmán W, Robledo W (2008) InfoStat software estadístico InfoStat versión 2008. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina, Manual de usuario

    Google Scholar 

  • Briat JF, Dubos C, Gaymard F (2015) Iron nutrition, biomass production, and plant product quality. Trends Plant Sci 20:33–40

    Article  CAS  Google Scholar 

  • Brumbarova T, Bauer P, Ivanov R (2015) Molecular mechanisms governing Arabidopsis iron uptake. Trends Plant Sci 20(2):124–133

    Article  CAS  Google Scholar 

  • Chatterjee D, Datta SC, Manjaiah KM (2015) Effect of citric acid treatment on release of phosphorus, aluminium and iron from three dissimilar soils of India. Arch Agron Soil Sc 61:105–117

    Article  CAS  Google Scholar 

  • Ehsan S, Ali S, Noureen S, Mahmood K, Farid M, Ishaque W, Rizwan M (2014) Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotox Environ Safe 106:164–172

    Article  CAS  Google Scholar 

  • Fish WW, Perkins-Veazie P, Collins JJ (2002) A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. J Food Composit Ann 15:309–317

    Article  CAS  Google Scholar 

  • Frohne T, Rinklebe J, Diaz-Bone RA, Du Laing G (2011) Controlled variation of redox conditions in a floodplain soil: impact on metal mobilization and biomethylation of arsenic and antimony. Geoderma 160:414–424

    Article  CAS  Google Scholar 

  • Guil-Guerrero JL, Rebolloso-Fuentes MM (2009) Nutrient composition and antioxidant activity of eight tomato (Lycopersicon esculentum) varieties. J Food Compos Anal 22(2):123–129

    Article  CAS  Google Scholar 

  • Hill T, Lewicki P (2007) STATISTICS: methods and applications. StatSoft Inc, Tulsa

    Google Scholar 

  • Khaled H, Fawy HA (2011) Effect of different levels of humic acids on the nutrient content, plant growth, and soil properties under conditions of salinity. Soil & Water Res 6:21–29

    Article  CAS  Google Scholar 

  • Kong J, Dong Y, Zhang X, Wang Q, Xu L, Liu S, Hou J, Fan Z (2015) Effects of exogenous salicylic acid on physiological characteristics of peanut seedlings under iron-deficiency stress. J. Plant Nutrition 38:127–144

    Article  CAS  Google Scholar 

  • Márquez-Quiroz C, De-la-Cruz-Lázaro E, Osorio-Osorio R, Sánchez-Chávez E (2015) Biofortification of cowpea beans with iron: iron’s influence on mineral content and yield. Soil Sci Plant Nutr 15(4):839–847

    Google Scholar 

  • Mora V, Bacaicoa E, Zamarreño AM, Aguirre E, Garnica M, Fuentes M, García-Mina JM (2010) Action of humic acid on promotion of cucumber shoot growth involves nitrate-related changes associated with the root-to-shoot distribution of cytokinins, polyamines and mineral nutrients. J Plant Physiol 167(8):633–642

    Article  CAS  Google Scholar 

  • Moradi N, Sadaghiani MR, Sepehr E, MandoulakanI BA (2012) Effects of low-molecular-weight organic acids on phosphorus sorption characteristics in some calcareous soils. Turk J Agric For 36(4):459–468

    CAS  Google Scholar 

  • Mujtaba A, Masud T (2014) Enhancing post harvest storage life of tomato (Lycopersicon esculentum Mill.) cv. Rio Grandi using calcium chloride. American-Eurasian J. Agric. & environ. Sci. 14(2):143–149

    CAS  Google Scholar 

  • Nag A, Gupta H (2014) Physicochemical analysis of some water ponds in and around Santiniketan, West Bengal, India. Int J Environ Sci 4(5):676–682

    CAS  Google Scholar 

  • Nour V, Trandafir I, Ionica ME (2013) Antioxidant compounds, mineral content and antioxidant activity of several tomato cultivars grown in Southwestern Romania. Not Bot Horti Agrobo 41:136–142

    Article  CAS  Google Scholar 

  • Nozoye T, Nagasaka S, Bashir K, Takahashi M, Kobayashi T, Nakanishi H, Nishizawa NK (2014) Nicotianamine synthase 2 localizes to the vesicles of iron-deficient rice roots, and its mutation in the YXXf or LL motif causes the disruption of vesicle formation or movement in rice. Plant J 77(2):246–260

    Article  CAS  Google Scholar 

  • Orndorff, Z.W., Daniels, W.L., Beck, M., Eick, M.J. 2010. Leaching potentials of coal spoil and refuse: acid-base interactions and electrical conductivity. p. 736–766. In: R.I. Barnhisel (ed.) Proc. Am. Soc. Min. Reclam., Pittsburgh, PA. 5–11. ASMR, Lexington, KY

  • Padayatt SJ, Daruwala R, Wang Y, Eck PK, Song J, Koh WS, Levine M (2001) Vitamin C: from molecular actions to optimum intake. In: Cadenas E, Packer L (eds) Handbook of antioxidants. CRC Press. Washington, DC, pp 117–145

    Google Scholar 

  • Redel Y, Cartes P, Demanet R, Velásquez G, Poblete-Grant P, Bol R, Mora ML (2016) Assessment of phosphorus status influenced by Al and Fe compounds in volcanic grassland soils. Soil Sci Plant Nutr 16(2):490–506

    CAS  Google Scholar 

  • Rengel Z (2015) Availability of Mn, Zn and Fe in the rhizosphere. Soil Sci Plant Nutr 15(2):397–409

    CAS  Google Scholar 

  • Sánchez-Rodríguez AR, del Campillo MC, Torrent J, Jones DL (2014) Organic acids alleviate iron chlorosis in chickpea grown on two p-fertilized soils. J Soil Sci Plant Nutr 14(2):292–303

    Google Scholar 

  • Schmidt W (2003) Iron solutions: acquisition strategies and signaling pathways in plants. TRENDS Plant Science 8(4):188–193

    Article  CAS  Google Scholar 

  • Steiner AA (1961) A universal method for preparing nutrient solutions of a certain desired composition. Plant Soil 15:134–154

    Article  CAS  Google Scholar 

  • Ström L, Owen AG, Godbold DL, Jones DL (2001) Organic acid behavior in calcareous soil: sorption and biodegradation rates. Soil Biol Biochem 33:2125–2133

    Article  Google Scholar 

  • Ström L, Owen AG, Godbold DL, Jones DL (2005) Organic acid behaviour in a calcareous soil implications for rhizosphere nutrient cycling. Soil Biol Biochem 37(11):2046–2054

    Article  Google Scholar 

  • Torres AP, Mickelbart MV, Lopez RG (2010) Leachate volume effects on pH and electrical conductivity measurements in containers obtained using the pour-through method. HortTechnology 20(3):608–611

    Article  Google Scholar 

  • USDA. 1997. United states department of agriculture. Agricultural marke-ting Service. United States standards for grades of fresh tomatoes

  • Vernon P (1960) Spectrophotometric determinations of chlorophylls and pheophtins in plant extracts. Anal Chem 32(9):1144–1150

    Article  CAS  Google Scholar 

  • Ylivainio K (2010) Effects of iron(III) chelates on the solubility of heavy metals in calcareous soils. Environ Pollut 158(10):3194–3200

    Article  CAS  Google Scholar 

  • Yong-liang C, Yu-qiang G, Shi-jie H, Chun-jing Z, Yu-mei Z, Guo-ling C (2002) Effect of root derived organic acids on the activation of nutrients in the rhizosphere soil. J Forestry Research 13(2):115–118

    Article  Google Scholar 

Download references

Acknowledgments

This study is financially supported by the CONACYT and Arysta LifeScience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana González-Morales.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Labrada, F., Benavides-Mendoza, A., Juárez-Maldonado, A. et al. Organic acids combined with Fe-chelate improves ferric nutrition in tomato grown in calcisol soil. J Soil Sci Plant Nutr 20, 673–683 (2020). https://doi.org/10.1007/s42729-019-00155-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-019-00155-3

Keywords

Navigation