Skip to main content
Log in

Tobacco stem-derived N-enriched active carbon: efficient metal free catalyst for reduction of nitroarene

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

A series of N-enriched active carbons (NACs) were prepared from carbonization of tobacco stem with KOH as activating agent. The obtained NACs were used as efficient metal free catalysts for reduction of nitroarene. The results of N2 adsorption–desorption indicate that NACs have a large number of mesopores with the increase of mass ratio of KOH to the precursor. NACs-3800 has high surface area (SBET = 2938 m2 g−1) and a large pore volume (Vtotal = 1.60 cm3 g−1) with a nitrogen content (1.32%). NACs-3800 showed a high catalytic activity (99.9% conversion, nearly 100% selectivity to aniline) in the reduction of nitrobenzene. Moreover, NACs-3800 also exhibits good catalytic activity in the reduction of substituted nitroarenes. Furthermore, the NACs-3800 presented remarkable activity and durability for nitrobenzene reduction to the corresponding aniline. The recyclability of the catalyst and its cheap feedstock makes the overall process much simple, cost-efficient and environment-friendly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu X, Dai L (2016) Carbon-based metal-free catalysts. Nat Rev Mater 1(11):1–12. https://doi.org/10.1038/natrevmats.2016.64

    Article  CAS  Google Scholar 

  2. Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18(16):2073–2094. https://doi.org/10.1002/adma.200501576

    Article  CAS  Google Scholar 

  3. Zielinski M, Wojcieszak R, Monteverdi S, Mercy M, Bettahar M (2007) Hydrogen storage in nickel catalysts supported on activated carbon. Int J Hydrogen Energ 32(8):1024–1032. https://doi.org/10.1016/j.ijhydene.2006.07.004

    Article  CAS  Google Scholar 

  4. Otowa T, Nojima Y, Miyazaki T (1997) Development of KOH activated high surface area carbon and its application to drinking water purification. Carbon 35(9):1315–1319. https://doi.org/10.1016/S0008-6223(97)00076-6

    Article  CAS  Google Scholar 

  5. Wang J, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22(45):23710. https://doi.org/10.1039/c2jm34066f

    Article  CAS  Google Scholar 

  6. Dong X, Chao S, Wan F, Guan Q, Wang G, Li W (2018) Sulfur and nitrogen co-doped mesoporous carbon with enhanced performance for acetylene hydrochlorination. J Catal 359:161–170. https://doi.org/10.1016/j.jcat.2017.12.016

    Article  CAS  Google Scholar 

  7. Xi J, Wang Q, Liu J, Huan L, He Z, Qiu Y, Zhang J, Tang C, Xiao J, Wang S (2018) N, P-dual-doped multilayer graphene as an efficient carbocatalyst for nitroarene reduction: a mechanistic study of metal-free catalysis. J Catal 359:233–241. https://doi.org/10.1016/j.jcat.2018.01.003

    Article  CAS  Google Scholar 

  8. Mao S, Wang C, Wang Y (2019) The chemical nature of N doping on N doped carbon supported noble metal catalysts. J Catal 375:456–465. https://doi.org/10.1016/j.jcat.2019.06.039

    Article  CAS  Google Scholar 

  9. Yuan Z, Liu B, Zhou P, Zhang Z, Chi Q (2019) Preparation of nitrogen-doped carbon supported cobalt catalysts and its application in the reductive amination. J Catal 370:347–356. https://doi.org/10.1016/j.jcat.2019.01.004

    Article  CAS  Google Scholar 

  10. Zhu J, Yang J, Deng B (2009) Enhanced mercury ion adsorption by amine-modified activated carbon. J Hazard Mater 166(2–3):866–872. https://doi.org/10.1016/j.jhazmat.2008.11.095

    Article  CAS  PubMed  Google Scholar 

  11. Liu S-H, Huang Y-Y (2018) Valorization of coffee grounds to biochar-derived adsorbents for CO2 adsorption. J Clean Prod 175:354–360. https://doi.org/10.1016/j.jclepro.2017.12.076

    Article  CAS  Google Scholar 

  12. Przepiórski J, Skrodzewicz M, Morawski AW (2004) High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption. Appl Surf Sci 225(1–4):235–242. https://doi.org/10.1016/j.apsusc.2003.10.006

    Article  CAS  Google Scholar 

  13. Jurewicz K, Pietrzak R, Nowicki P, Wachowska H (2008) Capacitance behaviour of brown coal based active carbon modified through chemical reaction with urea. Electrochim Acta 53(16):5469–5475. https://doi.org/10.1016/j.electacta.2008.02.093

    Article  CAS  Google Scholar 

  14. Li L, Liu E, Li J, Yang Y, Shen H, Huang Z, Xiang X, Li W (2010) A doped activated carbon prepared from polyaniline for high performance supercapacitors. J Power Sources 195(5):1516–1521. https://doi.org/10.1016/j.jpowsour.2009.09.016

    Article  CAS  Google Scholar 

  15. Wei L, Sevilla M, Fuertes AB, Mokaya R, Yushin G (2012) Polypyrrole-derived activated carbons for high-performance electrical double-layer capacitors with ionic liquid electrolyte. Adv Funct Mater 22(4):827–834. https://doi.org/10.1002/adfm.201101866

    Article  CAS  Google Scholar 

  16. Liu Z, Du Z, Song H, Wang C, Subhan F, Xing W, Yan Z (2014) The fabrication of porous N-doped carbon from widely available urea formaldehyde resin for carbon dioxide adsorption. J Colloid Inter Sci 416:124–132. https://doi.org/10.1016/j.jcis.2013.10.061

    Article  CAS  Google Scholar 

  17. Kim YJ, Abe Y, Yanagiura T, Park KC, Shimizu M, Iwazaki T, Nakagawa S, Endo M, Dresselhaus MS (2007) Easy preparation of nitrogen-enriched carbon materials from peptides of silk fibroins and their use to produce a high volumetric energy density in supercapacitors. Carbon 45(10):2116–2125. https://doi.org/10.1016/j.carbon.2007.05.026

    Article  CAS  Google Scholar 

  18. Sun J, Niu J, Liu M, Ji J, Dou M, Wang F (2018) Biomass-derived nitrogen-doped porous carbons with tailored hierarchical porosity and high specific surface area for high energy and power density supercapacitors. Appl Surf Sci 427:807–813. https://doi.org/10.1016/j.apsusc.2017.07.220

    Article  CAS  Google Scholar 

  19. Li Z, Xu Z, Tan X, Wang H, Holt CMB, Stephenson T, Olsen BC, Mitlin D (2013) Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energ Environ Sci 6(3):871. https://doi.org/10.1039/c2ee23599d

    Article  CAS  Google Scholar 

  20. Li Z, Zhang L, Amirkhiz BS, Tan X, Xu Z, Wang H, Olsen BC, Holt CMB, Mitlin D (2012) Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors. Adv Energ Mater 2(4):431–437. https://doi.org/10.1002/aenm.201100548

    Article  CAS  Google Scholar 

  21. Wang Q, Cao Q, Wang X, Jing B, Kuang H, Zhou L (2013) A high-capacity carbon prepared from renewable chicken feather biopolymer for supercapacitors. J Power Sour 225:101–107. https://doi.org/10.1016/j.jpowsour.2012.10.022

    Article  CAS  Google Scholar 

  22. Xu G, Han J, Ding B, Nie P, Pan J, Dou H, Li H, Zhang X (2015) Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chem 17(3):1668–1674. https://doi.org/10.1039/c4gc02185a

    Article  CAS  Google Scholar 

  23. Guo Z, Zhou Q, Wu Z, Zhang Z, Zhang W, Zhang Y, Li L, Cao Z, Wang H, Gao Y (2013) Nitrogen-doped carbon based on peptides of hair as electrode materials for surpercapacitors. Electrochim Acta 113:620–627. https://doi.org/10.1016/j.electacta.2013.09.112

    Article  CAS  Google Scholar 

  24. Si W, Zhou J, Zhang S, Li S, Xing W, Zhuo S (2013) Tunable N-doped or dual N, S-doped activated hydrothermal carbons derived from human hair and glucose for supercapacitor applications. Electrochim Acta 107:397–405. https://doi.org/10.1016/j.electacta.2013.06.065

    Article  CAS  Google Scholar 

  25. Xu B, Hou S, Cao G, Wu F, Yang Y (2012) Sustainable nitrogen-doped porous carbon with high surface areas prepared from gelatin for supercapacitors. J Mater Chem 22(36):19088. https://doi.org/10.1039/c2jm32759g

    Article  CAS  Google Scholar 

  26. Zhao Y, Lu M, Tao P, Zhang Y, Gong X, Yang Z, Zhang G, Li H (2016) Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. J Power Sour 307:391–400. https://doi.org/10.1016/j.jpowsour.2016.01.020

    Article  CAS  Google Scholar 

  27. Li W, Zhang L, Peng J, Li N, Zhang S, Guo S (2008) Tobacco stems as a low cost adsorbent for the removal of Pb(II) from wastewater: Equilibrium and kinetic studies. Ind Crop Prod 28(3):294–302. https://doi.org/10.1016/j.indcrop.2008.03.007

    Article  CAS  Google Scholar 

  28. Li W, Zhang L, Peng J, Li N, Zhu X (2008) Preparation of high surface area activated carbons from tobacco stems with K2CO3 activation using microwave radiation. Ind Crop Prod 27(3):341–347. https://doi.org/10.1016/j.indcrop.2007.11.011

    Article  CAS  Google Scholar 

  29. Blaser H, Steiner H, Studer M (2009) Selective catalytic hydrogenation of functionalized nitroarenes: An update. ChemCatChem 1(2):210–221. https://doi.org/10.1002/cctc.200900129

    Article  CAS  Google Scholar 

  30. Jin S, Qian WZ, Liu Y, Wei F, Wang DZ, Zhang JC (2010) Granulated carbon nanotubes as the catalyst support for Pt for the hydrogenation of nitrobenzene. Aust J Chem 63(1):131–134. https://doi.org/10.1071/Ch09162

    Article  CAS  Google Scholar 

  31. Torres GC, Jablonski EL, Baronetti GT, Castro AA, De Miguel SR, Scelza OA, Blanco MD, Jimnez MAP, Fierro JLG (1997) Effect of the carbon pre-treatment on the properties and performance for nitrobenzene hydrogenation of Pt-C catalysts. Appl Catal A 161:213–226

    Article  CAS  Google Scholar 

  32. Zuo P, Duan J, Fan H, Qu S, Shen W (2018) Facile synthesis high nitrogen-doped porous carbon nanosheet from pomelo peel and as catalyst support for nitrobenzene hydrogenation. Appl Surf Sci 435:1020–1028. https://doi.org/10.1016/j.apsusc.2017.11.179

    Article  CAS  Google Scholar 

  33. Cárdenas-Lizana F, Gómez-Quero S, Idriss H, Keane MA (2009) Gold particle size effects in the gas-phase hydrogenation of m-dinitrobenzene over Au/TiO2. J Catal 268(2):223–234. https://doi.org/10.1016/j.jcat.2009.09.020

    Article  CAS  Google Scholar 

  34. Liu Z, Li Y, Huang X, Zuo J, Qin Z, Xu C (2016) Preparation and characterization of Ni-B/SiO2sol amorphous catalyst and its catalytic activity for hydrogenation of nitrobenzene. Catal Commun 85:17–21. https://doi.org/10.1016/j.catcom.2016.07.008

    Article  CAS  Google Scholar 

  35. Qu Y, Yang H, Wang S, Chen T, Wang G (2017) Hydrogenation of nitrobenzene to aniline catalyzed by C60-stabilized Ni. Catal Commun 97:83–87. https://doi.org/10.1016/j.catcom.2017.04.029

    Article  CAS  Google Scholar 

  36. Amanchi SR, Ashok Kumar KV, Lakshminarayana B, Satyanarayana G, Subrahmanyam C (2019) Photocatalytic hydrogenation of nitroarenes: supporting effect of CoOx on TiO2 nanoparticles. New J Chem 43(2):748–754. https://doi.org/10.1039/c8nj05260c

    Article  CAS  Google Scholar 

  37. Wang X, Li Y (2016) Chemoselective hydrogenation of functionalized nitroarenes using MOF-derived co-based catalysts. J Mol Catal A: Chem 420:56–65. https://doi.org/10.1016/j.molcata.2016.04.008

    Article  CAS  Google Scholar 

  38. Sun X, Olivos-Suarez AI, Osadchii D, Romero MJV, Kapteijn F, Gascon J (2018) Single cobalt sites in mesoporous N-doped carbon matrix for selective catalytic hydrogenation of nitroarenes. J Catal 357:20–28. https://doi.org/10.1016/j.jcat.2017.10.030

    Article  CAS  Google Scholar 

  39. Jagadeesh RV, Surkus AE, Junge H, Pohl MM, Radnik J, Rabeah J, Huan H, Schunemann V, Bruckner A, Beller M (2013) Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Sci 342(6162):1073–1076. https://doi.org/10.1126/science.1242005

    Article  CAS  Google Scholar 

  40. Watanabe H, Asano S, Fujita S-i, Yoshida H, Arai M (2015) Nitrogen-doped, metal-free activated carbon catalysts for aerobic oxidation of alcohols. ACS Catal 5(5):2886–2894. https://doi.org/10.1021/acscatal.5b00375

    Article  CAS  Google Scholar 

  41. Haag D, Kung HH (2013) Metal free graphene based catalysts: a review. Top Catal 57(6–9):762–773. https://doi.org/10.1007/s11244-013-0233-9

    Article  CAS  Google Scholar 

  42. Yang F, Cao Y, Chen Z, He X, Hou L, Li Y (2018) Large-scale preparation of B/N co-doped graphene-like carbon as an efficient metal-free catalyst for the reduction of nitroarenes. New J Chem 42(4):2718–2725. https://doi.org/10.1039/c7nj04187j

    Article  CAS  Google Scholar 

  43. He Z, Liu J, Wang Q, Zhao M, Wen Z, Chen J, Manoj D, Xie C, Xi J, Yu J, Tang C, Bai Z, Wang S (2019) Metal-free carbocatalyst for catalytic hydrogenation of N-containing unsaturated compounds. J Catal 377:199–208. https://doi.org/10.1016/j.jcat.2019.07.017

    Article  CAS  Google Scholar 

  44. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Sci 332(6037):1537–1541. https://doi.org/10.1126/science.1200770

    Article  CAS  Google Scholar 

  45. Zhang W, Zhao M, Liu R, Wang X, Lin H (2015) Hierarchical porous carbon derived from lignin for high performance supercapacitor. Colloid Surf A Physicochem Eng Asp 484:518–527. https://doi.org/10.1016/j.colsurfa.2015.08.030

    Article  CAS  Google Scholar 

  46. Lin G, Ma R, Zhou Y, Hu C, Yang M, Liu Q, Kaskel S, Wang J (2018) Three-dimensional interconnected nitrogen-doped mesoporous carbons as active electrode materials for application in electrocatalytic oxygen reduction and supercapacitors. J Colloid Interf Sci 527:230–240. https://doi.org/10.1016/j.jcis.2018.05.020

    Article  CAS  Google Scholar 

  47. Kaniyoor A, Baby TT, Arockiadoss T, Rajalakshmi N, Ramaprabhu S (2011) Wrinkled graphenes: a study on the effects of synthesis parameters on exfoliation-reduction of graphite oxide. J Physical Chem C 115(36):17660–17669. https://doi.org/10.1021/jp204039k

    Article  CAS  Google Scholar 

  48. Tang D, Luo Y, Lei W, Xiang Q, Ren W, Song W, Chen K, Sun J (2018) Hierarchical porous carbon materials derived from waste lentinus edodes by a hybrid hydrothermal and molten salt process for supercapacitor applications. Appl Surf Sci 462:862–871. https://doi.org/10.1016/j.apsusc.2018.08.153

    Article  CAS  Google Scholar 

  49. Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10(3):751–758. https://doi.org/10.1021/nl904286r

    Article  CAS  PubMed  Google Scholar 

  50. Tang H, Yan D, Lu T, Pan L (2017) Sulfur-doped carbon spheres with hierarchical micro/mesopores as anode materials for sodium-ion batteries. Electrochim Acta 241:63–72. https://doi.org/10.1016/j.electacta.2017.04.112

    Article  CAS  Google Scholar 

  51. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  52. Lu J, Bo X, Wang H, Guo L (2013) Nitrogen-doped ordered mesoporous carbons synthesized from honey as metal-free catalyst for oxygen reduction reaction. Electrochim Acta 108:10–16. https://doi.org/10.1016/j.electacta.2013.06.066

    Article  CAS  Google Scholar 

  53. Yang L, Yee WA, Phua SL, Kong J, Ding H, Cheah JW, Lu X (2012) A high throughput method for preparation of highly conductive functionalized graphene and conductive polymer nanocomposites. RSC Adv 2(6):2208. https://doi.org/10.1039/c2ra00798c

    Article  CAS  Google Scholar 

  54. Gong J, Liu J, Chen X, Jiang Z, Wen X, Mijowska E, Tang T (2015) Converting real-world mixed waste plastics into porous carbon nanosheets with excellent performance in the adsorption of an organic dye from wastewater. J Mater Chem A 3(1):341–351. https://doi.org/10.1039/c4ta05118a

    Article  CAS  Google Scholar 

  55. Cazetta AL, Zhang T, Silva TL, Almeida VC, Asefa T (2018) Bone char-derived metal-free N- and S-co-doped nanoporous carbon and its efficient electrocatalytic activity for hydrazine oxidation. Appl Catal B: Environmental 225:30–39. https://doi.org/10.1016/j.apcatb.2017.11.050

    Article  CAS  Google Scholar 

  56. Kumar B, Asadi M, Pisasale D, Sinha-Ray S, Rosen BA, Haasch R, Abiade J, Yarin AL, Salehi-Khojin A (2013) Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat Commun 4(1):2819. https://doi.org/10.1038/ncomms3819

    Article  CAS  Google Scholar 

  57. Wu J, Wen C, Zou X, Jimenez J, Sun J, Xia Y, Fonseca Rodrigues M-T, Vinod S, Zhong J, Chopra N, Odeh IN, Ding G, Lauterbach J, Ajayan PM (2017) Carbon dioxide hydrogenation over a metal-free carbon-based catalyst. ACS Catal 7(7):4497–4503. https://doi.org/10.1021/acscatal.7b00729

    Article  CAS  Google Scholar 

  58. Panomsuwan G, Saito N, Ishizaki T (2016) Nitrogen-doped carbon nanoparticle-carbon nanofiber composite as an efficient metal-free cathode catalyst for oxygen reduction reaction. ACS Appl Mater Inter 8(11):6962–6971. https://doi.org/10.1021/acsami.5b10493

    Article  CAS  Google Scholar 

  59. Soares OSGP, Rocha RP, Gonçalves AG, Figueiredo JL, Órfão JJM, Pereira MFR (2016) Highly active N-doped carbon nanotubes prepared by an easy ball milling method for advanced oxidation processes. Appl Catal B Environ 192:296–303. https://doi.org/10.1016/j.apcatb.2016.03.069

    Article  CAS  Google Scholar 

  60. Wei Q, Qin F, Ma Q, Shen W (2019) Coal tar- and residual oil-derived porous carbon as metal-free catalyst for nitroarene reduction to aminoarene. Carbon 141:542–552. https://doi.org/10.1016/j.carbon.2018.09.087

    Article  CAS  Google Scholar 

  61. Hu X, Long Y, Fan M, Yuan M, Zhao H, Ma J, Dong Z (2019) Two-dimensional covalent organic frameworks as self-template derived nitrogen-doped carbon nanosheets for eco-friendly metal-free catalysis. Appl Catal B Environ 244:25–35. https://doi.org/10.1016/j.apcatb.2018.11.028

    Article  CAS  Google Scholar 

  62. Larsen JW, Freund M, Kim KY, Sidovar M, Stuart JL (2000) Mechanism of the carbon catalyzed reduction of nitrobenzene by hydrazine. Carbon 38:655–661. https://doi.org/10.1016/S0008-6223(99)00155-4

    Article  CAS  Google Scholar 

  63. Diez-Cecilia E, Kelly B, Rozas I (2011) One-step double reduction of aryl nitro and carbonyl groups using hydrazine. Tetrahedron Lett 52(50):6702–6704. https://doi.org/10.1016/j.tetlet.2011.09.112

    Article  CAS  Google Scholar 

  64. Yang HJ, Yang H, Hong YH, Zhang PY, Wang T, Chen LN, Zhang FY, Wu QH, Tian N, Zhou ZY, Sun SG (2018) Promoting ethylene selectivity from CO2 electroreduction on CuO supported onto CO2 capture materials. Chemsuschem 11(5):881–887. https://doi.org/10.1002/cssc.201702338

    Article  CAS  PubMed  Google Scholar 

  65. Torres CC, Jiménez VA, Campos CH, Alderete JB, Dinamarca R, Bustamente TM, Pawelec B (2018) Gold catalysts supported on TiO2-nanotubes for the selective hydrogenation of p-substituted nitrobenzenes. Mol Catal 447:21–27. https://doi.org/10.1016/j.mcat.2017.12.039

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Sciences Foundation of China (Grant Nos. Nos.21776058 and Nos.21802031); Natural Sciences Foundation of Hebei province (Grant Nos. No.B2017202226 and No.B2017202133) and Colleges and Universities in Hebei Province Science and Technology Research Project (Grant No. QN2017046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hefang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30637 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Li, X., Cui, Z. et al. Tobacco stem-derived N-enriched active carbon: efficient metal free catalyst for reduction of nitroarene. Reac Kinet Mech Cat 130, 331–346 (2020). https://doi.org/10.1007/s11144-020-01777-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01777-w

Keywords

Navigation