Skip to main content

Advertisement

Log in

Effects of Branching Strategy on the Gene Transfection of Highly Branched Poly(β-amino ester)s

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Highly branched poly(β-amino ester)s (HPAEs) have emerged as one type of the most viable non-viral gene delivery vectors, both in vitro and in vivo. However, the effects of different branching strategies on the gene transfection performance have not yet been explored. Here, using triacrylate (B3) and diamine (B4) as the branching monomers, a series of HPAEs were synthesized via the “A2 + B3 + C2” and “A2 + B4 + C2” strategies, respectively. Results show that the branching strategy plays a pivotal role in dictating the physiological properties of the HPAE/DNA polyplexes and thus leads to obviously different cell viability and transfection efficiency. Comparatively, HPAEs synthesized via the “A2 + B3 + C2” branching strategy are more favorable for DNA transfection than that synthesized via the “A2 + B4 + C2” strategy. This study may provide new insights into the development of HPAEs based non-viral DNA delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pack, D. W.; Hoffman, A. S.; Pun, S.; Stayton, P. S. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov.2005, 4, 581–593.

    CAS  PubMed  Google Scholar 

  2. Nguyen, J.; Szoka, F. C. Nucleic acid delivery: the missing pieces of the puzzle? Ace. Chem. Res.2012, 45, 1153–1162.

    CAS  Google Scholar 

  3. Behr, J. P. Synthetic gene-transfer vectors. Ace. Chem. Res.1993, 26, 274–278.

    CAS  Google Scholar 

  4. Srinivas, R.; Samanta, S.; Chaudhuri, A. Cationic amphiphiles: promising carriers of genetic materials in gene therapy. Chem. Soc. Rev.2009, 38, 3326–3338.

    CAS  PubMed  Google Scholar 

  5. Mintzer, M. A.; Simanek, E. E. Nonviral vectors for gene delivery. Chem. Rev.2009, 109, 259–302.

    CAS  PubMed  Google Scholar 

  6. Guo, X.; Huang, L. Recent advances in non-viral vectors for gene delivery. Ace. Chem. Res.2013, 45, 971–979.

    Google Scholar 

  7. Boussif, O.; Lezoualc’h, F; Zanta, M. A.; Mergny, M. D.; Scherman, D.; Demeneix, B.; Behr, J. P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci.1995, 92, 7297–7301.

    CAS  PubMed  Google Scholar 

  8. Liu, H.; Wang, H.; Yang, W.; Cheng, Y. Disulfide cross-linked low generation dendrimers with high gene transfection efficacy, low cytotoxicity, and low cost. J. Am. Chem. Soc.2012, 134, 17680–17687.

    CAS  PubMed  Google Scholar 

  9. Zhao, T.; Zhang, H.; Newland, B.; Aied, A.; Zhou, D.; Wang, W. Significance of branching for transfection: synthesis of highly branched degradable functional polyfdimethylaminoethyl methacrylate) by vinyl oligomer combination. Angew. Chem. Int. Ed.2014, 53, 6095–6100.

    CAS  Google Scholar 

  10. Zhou, D.; Li, C., Hu, Y.; Zhou, H.; Chen, J.; Zhang, Z.; Guo, T. The effects of a multifunctional oligomer and its incorporation strategies on the gene delivery efficiency of poly(L-lysine). Chem. Commun. 2012, 48, 4594.

    CAS  Google Scholar 

  11. Li, C., Guo, T.; Zhou, D.; Hu, Y.; Zhou, H.; Wang, S.; Chen, J.; Zhang, Z. A novel glutathione modified chitosan conjugate for efficient gene delivery. J. Control. Release2011, 154, 177–188.

    CAS  PubMed  Google Scholar 

  12. Liu, S.; Zhou, D.; Yang, J.; Zhou, H.; Chen, J.; Guo, T. Bioreducible zinc(11)-coordinative polyethylenimine with low molecular weight for robust gene delivery of primary and stem cells. J. Am. Chem. Soc.2017, 139, 5102–5109.

    CAS  PubMed  Google Scholar 

  13. Wang, M.; Liu, H.; Li, L.; Cheng, Y. A fluorinated dendrimer achieves excellent gene transfection efficacy at extremely low nitrogen to phosphorus ratios. Nat. Commun.2014, 5, 1–8.

    Google Scholar 

  14. Lynn, D. M.; Langer, R. Degradable poly(ß-amino esters): synthesis, characterization, and self-assembly with plasmid DNA. J. Am. Chem. Soc.2000, 122, 10761–10768.

    CAS  Google Scholar 

  15. Green, J. J.; Langer, R.; Anderson, D. G. Yields Insight into nonviral gene delivery. Ace. Chem. Res.2008, 41, 749–759.

    CAS  Google Scholar 

  16. Akinc, A.; Lynn, D. M.; Anderson, D. G.; Langer, R. Parallel synthesis and biophysical characterization of a degradable polymer library for gene delivery. J. Am. Chem. Soc.2003, 125, 5316–5323.

    CAS  PubMed  Google Scholar 

  17. Eltoukhy, A. A.; Siegwart, D. J.; Alabi, C. A.; Rajan, J. S.; Langer, R.; Anderson, D. G. Effect of molecular weight of amine end-modified poly(ß-amino ester)s on gene delivery efficiency and toxicity. Biomaterials2012, 33, 3594–3603.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Anderson, D. G.; Lynn, D. M.; Langer, R. Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angew. Chem. Int. Ed.2003, 42, 3153–3158.

    CAS  Google Scholar 

  19. Green, J. J.; Zugates, G. T.; Tedford, N. C; Huang, Y. H.; Griffith, L. G.; Lauffenburger, D. A.; Sawicki, J. A.; Langer, R.; Anderson, D. G. Combinatorial modification of degradable polymers enables transfection of human cells comparable to adenovirus. Adv. Mater.2007, 19, 2836–2842.

    CAS  Google Scholar 

  20. Lee, C. C; MacKay, J. A.; Frechet, J. M. J.; Szoka, F. C. Designing dendrimers for biological applications. Nat. Biotechnol.2005, 23, 1517–1526.

    CAS  PubMed  Google Scholar 

  21. Voit, B. I.; Lederer, A. Hyperbranched and highly branched polymer architectures-synthetic strategies and major characterization aspects. Chem. Rev.2009, 109, 5924–5973.

    CAS  PubMed  Google Scholar 

  22. Lim, Y. B.; Kim, S. M.; Lee, Y.; Lee, W. K.; Yang, T. G.; Lee, M. J.; Sun, H.; Park, J. S. Cationic hyperbranched polyfamino ester): a novel class of DNA condensing molecule with cationic surface, biodegradable three-dimensional structure, and tertiary amine groups in the interior. J. Am. Chem. Soc.2001, 123, 2460–2461.

    CAS  PubMed  Google Scholar 

  23. Wu, D.; Liu, Y.; Chen, L., He, C., Chung, T. S.; Goh, S. H. 2A2 + BB'B” approach to hyperbranched polyfamino ester)s. Macromolecules2005, 38, 5519–5525.

    CAS  Google Scholar 

  24. Liu, Y.; Wu, D.; Ma, Y.; Tang, G.; Wang, S.; He, C; Chung, T; Goh, S. Novel polyfamino ester)s obtained from Michael addition polymerizations of trifunctional amine monomers with diacrylates: safe and efficient DNA carriers. Chem. Commun.2003, 20, 2630–2631.

    Google Scholar 

  25. Wu, D.; Liu, Y.; Jiang, X.; He, C., Goh, S. H.; Leong, K. W. Hyperbranched polyfamino ester)s with different terminal amine groups for DNA delivery. Biomacromolecules2006, 7, 1879–1883.

    CAS  PubMed  Google Scholar 

  26. Huang, J. Y.; Gao, Y.; Cutlar, L; O’Keeffe-Ahern, J.; Zhao, T; Lin, F. H.; Zhou, D.; McMahon, S.; Greiser, U.; Wang, W.; Wang W. Tailoring highly branched poly(ß-amino ester)s: a synthetic platform for epidermal gene therapy. Chem. Commun.2015, 51, 8473–8476.

    CAS  Google Scholar 

  27. Zhou, D.; Cutlar, L., Gao, Y.; Wang, W.; O’Keeffe-Ahern, J.; McMahon, S.; Duarte, B.; Larcher, F.; Rodriguez, J. B.; Greiser U.; Wang, W. Highly branched poly(sB-amino esters): synthesis and application in gene delivery. Biomacromolecules2015, 16, 2609–2617.

    PubMed  Google Scholar 

  28. Zhou, D.; Cutlar, L., Gao, Y.; Wang, W.; O’Keeffe-Ahern, J.; McMahon, S.; Duarte, B.; Larcher, F.; Rodriguez, J. B.; Greiser U.; Wang, W. The transition from linear to highly branched polyfamino ester)s: branching matters for gene delivery. Sci. Adv.2016, 2, e1600102.

    PubMed  PubMed Central  Google Scholar 

  29. Zhou, D.; Gao, Y.; Aied, A.; Cutlar, L., Igoucheva, O.; Newland, B.; Alexeeve, V.; Greiser, U.; Uitto, J.; Wang, W. Highly branched poly(ß-amino ester)s for skin gene therapy. J. Control. Release2016, 244, 336–346.

    CAS  PubMed  Google Scholar 

  30. Cutlar, L., Zhou, D.; Hu, X.; Duarte, B.; Greiser, U.; Larcher, F.; Wang, W. A non-viral gene therapy for treatment of recessive dystrophic epidermolysis bullosa. Exp. Dermatol.2016, 25, 818–820.

    PubMed  Google Scholar 

  31. Zeng, M.; Zhou, D.; Alshehri, F.; Lara-Saez, I.; Lyu, Y.; Creagh-Flynn, J.; A.; S.;, Xu Q.; Zhang, J.; Wang W. Manipulation of transgene expression in fibroblast cells by a multifunctional linear-branched hybrid poly(sB-amino ester) synthesized through an oligomer combination approach. Nano Lett.2019, 19, 381–391.

    CAS  PubMed  Google Scholar 

  32. Zeng, M.; Alshehri, F.; Zhou, D.; Lara-Saez, I.; Wang, X.; Li, X. A.; Xu, Q.; Zhang, J.; Wang W. Efficient and robust highly branched poly(ß-amino ester)/minicircle COL7A1 polymeric nanoparticles for gene delivery to recessive dystrophic epidermolysis bullosa keratinocytes. ACSAppl. Mater. Interfaces2019, 11, 30661–30672.

    CAS  Google Scholar 

  33. Zhou, D.; Gao, Y.; Ahern, J. O.; Xu, Q.; Huang, X.; Greiser, U.; Wang, W. Development of branched poly(5-amino-1-pentanol-co-1, 4-butanediol diacrylate) with high gene transfection potency across diverse cell types. ACS Appl. Mater. Interfaces2016, 8, 34218–34226.

    CAS  PubMed  Google Scholar 

  34. Liu, S.; Gao, Y.; Zhou, D.; Zeng, M.; Alshehri, F.; Newland, B.; Lyu, J.; O’Keeffe-Ahern, J.; Greiser, U.; Guo, T.; Zhang, F.; Wang, W. Highly branched poly(sB-amino ester) delivery of minicircle DNA for transfection of neurodegenerative disease related cells. Nat. Commun.2019, 10, 1–14.

    Google Scholar 

  35. Zeng, M.; Zhou, D.; Ng, S.; Ahern, J. O.; Alshehri, F.; Gao, Y.; Pierucci, L.; Greiser U.; Wang, W. Highly branched poly(5-amino-1-pentanol-co-1, 4-butanediol diacrylate) for high performance gene transfection. Polymers2017, 9, 161.

    PubMed Central  Google Scholar 

  36. Liu, S.; Sun, Z.; Zhou, D.; Guo, T. Alkylated branched poly(sB-amino esters) demonstrate strong DNA encapsulation, high nanoparticle stability and robust gene transfection efficacy. J. Mater. Chem. B2017, 5, 5307–5310.

    CAS  PubMed  Google Scholar 

  37. Gao, Y.; Huang, J. Y.; Ahern, J. O.; Cutlar, L; Zhou, D.; Lin, F. H.; Wang, W. Highly branched poly(ß-amino esters) for non-viral gene delivery: high transfection efficiency and low toxicity achieved by increasing molecular weight. Biomacromolecules2016, 17, 3640–3647.

    CAS  PubMed  Google Scholar 

  38. Liu, S.; Gao, Y.; Zhou, D.; Greiser, U.; Guo, T.; Guo, R.; Wang, W. Biodegradable highly branched poly(sB-amino esterjs for targeted cancer cell gene transfection. ACS Biomater. Sci. Eng.2017, 3, 1283–1286.

    CAS  Google Scholar 

  39. Sperling, L. H. Introduction to physical polymer science, 4th ed. John Wiley & Sons, 2005.

    Google Scholar 

  40. Anderson, D. G.; Peng, W.; Akinc, A.; Hossain, N.; Kohn, A.; Padera, R.; Langer, R.; Sawicki, J. A. A polymer library approach to suicide gene therapy for cancer. Proc. Natl. Acad. Sci. U. S. A.2004, 101, 16028–16033.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Newland, B.; Zheng, Y.; Jin, Y.; Abu-Rub, M.; Cao, H.; Wang, W.; Pandit, A. Single cyclized molecule versus single branched molecule: a simple and efficient 3D 'knot’ polymer structure for nonviral gene delivery. J. Am. Chem. Soc.2012, 134, 4782–4789.

    CAS  PubMed  Google Scholar 

  42. Xiang, S.; Tong, H.; Shi, Q.; Fernandes, J. C; Jin, T.; Dai, K.; Zhang, X. Uptake mechanisms of non-viral gene delivery. J. Control. Release2012, 158, 371–378.

    CAS  PubMed  Google Scholar 

  43. Liu, Z.; Zhang, Z.; Zhou, C; Jiao, Y. Hydrophobic modifications of cationic polymers for gene delivery. Prog. Polym. Sci.2010, 35, 1144–1162.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Science Foundation Ireland (SFI) Principal Investigator Program (No. 13/IA/1962), the National Natural Science Foundation of China (Nos. 51873179 and 51903202), and University College Dublin.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to De-Zhong Zhou or Wen-Xin Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, CF., Lie, M. et al. Effects of Branching Strategy on the Gene Transfection of Highly Branched Poly(β-amino ester)s. Chin J Polym Sci 38, 830–839 (2020). https://doi.org/10.1007/s10118-020-2393-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2393-y

Keywords

Navigation