Skip to main content
Log in

Atomistic simulation of agglomeration of metal nanoparticles considering the induced charge density of surface atoms

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

To simulate the agglomeration of nanoparticles subjected to an external electric field, we develop a method to calculate the induced charge density in surface atoms to account for the inter-particle attractions between metallic nanoparticles, based on classical electrodynamics. A polarizable particle is subjected to dielectrophoresis force in a non uniform AC electric field. The induced charge density in a surface atom layer is redistributed to minimize the electric field inside the particle, restricting the total charge density of nanoparticles during the molecular dynamics simulations via a Lagrange multiplier method. The developed method is implemented in the LAMMPS code, where Lorentz and Coulomb forces applying on partially charged surface atoms are embedded to correct atomic motions in response to the applied AC electric field. In numerical examples, the electric field around a spherical nanoparticle shows good agreement with the analytical solution under external electric field. The proposed method is turned out to be more efficient for the problems of large particles since the ratio of surface to bulk atoms decreases as the size of particle increases. When an external electric field isexerted, the ordered aggregation of gold nanoparticles is observed in physical experiments and investigated through the LAMMPS simulations. The developed method successfully simulates that the nanoparticles are not only aligned in the direction of electric field but also formed lattice bonds due to the charges induced by the electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Barsotti Jr., R.J., Vahey, M.D., Wartena, R., Chiang, Y.M., Voldman, J., Stellacci, F.: Assembly of metal nanoparticles into nanogaps. Small 3(3), 488 (2007)

    Article  Google Scholar 

  • Ben, X., Park, H.: Atomistic simulations of electric field effects on the Young’s modulus of metal nanowires. Nanotechnology (2014). https://doi.org/10.1088/0957-4484/25/45/455704

    Article  Google Scholar 

  • Cha, S.H., Park, Y., Han, J.W., Kim, K., Kim, H.S., Jang, H.L., Cho, S.: Cold welding of gold nanoparticles on mica substrate: self-adjustment and enhanced diffusion. Sci. Rep. 6, 32951 (2016)

    Article  Google Scholar 

  • Cha, S.-H., Kang, S.-H., Lee, Y.J., Kim, J.-H., Ahn, E.-Y., Park, Y., Cho, S.: Fabrication of nanoribbons by dielectrophoresis assisted cold welding of gold nanoparticles on mica substrate. Sci. Rep. 9(1), 3629 (2019)

    Article  Google Scholar 

  • De Heer, W.: The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys. 65(3), 611 (1993). https://doi.org/10.1103/RevModPhys.65.611

    Article  Google Scholar 

  • Djurabekova, F., Parviainen, S., Pohjonen, A., Nordlund, K.: Atomistic modeling of metal surfaces under electric fields: direct coupling of electric fields to a molecular dynamics algorithm. Rev. E Stat. Nonlinear Soft Matter Phys. (2011). https://doi.org/10.1103/PhysRevE.83.026704

  • Dong, L., Bush, J., Chirayos, V., Solanki, R., Jiao, J., Ono, Y., Conley, J.F., Ulrich, B.D.: Dielectrophoretically controlled fabrication of single-crystal nickel silicide nanowire interconnects. Nano Lett. 5(10), 2112 (2005)

    Article  Google Scholar 

  • Foiles, S., Baskes, M., Daw, M.: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33(12), 7983 (1986). https://doi.org/10.1103/PhysRevB.33.7983

    Article  Google Scholar 

  • Gao, X., Hu, L., Sun, G.: Multiple image method for the two conductor spheres in a uniform electrostatic field. Commun. Theor. Phys. 57(6), 1066 (2012). https://doi.org/10.1088/0253-6102/57/6/21

    Article  MATH  Google Scholar 

  • Garca-Sánchez, P., Arcenegui, J., Morgan, H., Ramos, A.: Self-assembly of metal nanowires induced by alternating current electric fields. Appl. Phys. Lett. 10(1063/1), 4905924 (2015)

    Google Scholar 

  • Geiser, B., Larson, D., Gerstl, S., Reinhard, D., Kelly, T., Prosa, T., Olson, J.: A system for simulation of tip evolution under field evaporation. Microsc. Microanal. 15(2), 302 (2009). https://doi.org/10.1017/S1431927609098298

    Article  Google Scholar 

  • Gierhart, B., Howitt, D., Chen, S., Smith, R., Collins, S.: Frequency dependence of gold nanoparticle superassembly by dielectrophoresis. Langmuir 23(24), 12450 (2007). https://doi.org/10.1021/la701472y

    Article  Google Scholar 

  • Green, N.G., Ramos, A., Morgan, H.: Numerical solution of the dielectrophoretic and travelling wave forces for interdigitated electrode arrays using the finite element method. J. Electrostat. 56(2), 235 (2002)

    Article  Google Scholar 

  • Jackson, J.D.: Classical Electrodynamics, 2nd edn. John David Jackson/Wiley, New York (1975)

    MATH  Google Scholar 

  • Jensen, L., Jensen, L.: Electrostatic interaction model for the calculation of the polarizability of large noble metal nanoclusters. J. Phys. Chem. C 112(40), 15697 (2008). https://doi.org/10.1021/jp804116z

    Article  Google Scholar 

  • Kim, S.J., Jang, D.J.: Laser-induced nanowelding of gold nanoparticles. Appl. Phys. Lett. 86(3), 033112 (2005)

    Article  Google Scholar 

  • Kim, H.Y., Sofo, J., Velegol, D., Cole, M., Mukhopadhyay, G.: Static polarizabilities of dielectric nanoclusters. Rev. Atom. Mol. Opt. Phys. (2005). https://doi.org/10.1103/PhysRevA.72.053201

  • Kwaadgras, B., Van Roij, R., Dijkstra, M.: Self-consistent electric field-induced dipole interaction of colloidal spheres, cubes, rods, and dumbbells. J. Chem. Phys. 10(1063/1), 4870251 (2014)

    Google Scholar 

  • Lee, B.J., Shim, J.H., Baskes, I.: Semiempirical atomic potentials for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method. Rev. B Condens. Matter Mater. Phys. (2003). https://doi.org/10.1103/PhysRevB.68.144112

  • Lee, W.J., Ma, J., Bae, J., Jeong, K.S., Cho, M.H., Kang, C., Wi, J.S.: Strongly enhanced THz emission caused by localized surface charges in semiconducting germanium nanowires. Sci. Rep. (2013). https://doi.org/10.1038/srep01984

  • Mayer, A.: Polarization of metallic carbon nanotubes from a model that includes both net charges and dipoles. Rev. B Condens. Matter Phys. (2005). https://doi.org/10.1103/PhysRevB.71.235333

    Article  Google Scholar 

  • Pethig, R.: Review where is dielectrophoresis (DEP) going? J. Electrochem. Soc. 164(5), B3049 (2017)

    Article  Google Scholar 

  • Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  MATH  Google Scholar 

  • Quinn, M.J.M.J.: Parallel Programming in C with MPI and openMP/Michael J. Quinn. McGraw-Hill, Dubuque (2003)

  • Ranjan, N., Vinzelberg, H., Mertig, M.: Growing one-dimensional metallic nanowires by dielectrophoresis. Small 2(12), 1490 (2006)

    Article  Google Scholar 

  • Sánchez, C., Lozovoi, A., Alavi, A.: Field-evaporation from first-principles. Mol. Phys. 102(9–10), 1045 (2004). https://doi.org/10.1080/00268970410001727673

    Article  Google Scholar 

  • Song, H., Bennett, D.J.: A semi-analytical approach using artificial neural network for dielectrophoresis generated by parallel electrodes. J. Electrostat. 68(1), 49 (2010). https://doi.org/10.1016/j.elstat.2009.10.001

    Article  Google Scholar 

  • Sun, T., Morgan, H., Green, N.: Analytical solutions of AC electrokinetics in interdigitated electrode arrays: electric field, dielectrophoretic and traveling-wave dielectrophoretic forces. Rev. E Stat. Nonlinear Soft Matter Phys. (2007). https://doi.org/10.1103/PhysRevE.76.046610

  • Xiong, X., Busnaina, A., Selvarasah, S., Somu, S., Wei, M., Mead, J., Chen, C.L., Aceros, J., Makaram, P., Dokmeci, M.R.: Directed assembly of gold nanoparticle nanowires and networks for nanodevices. Appl. Phys. Lett. 91(6), 063101 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by National Research Foundation of Korea (Grant No. 2010-0018282).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seonho Cho.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JH., Cha, SH., Kang, SH. et al. Atomistic simulation of agglomeration of metal nanoparticles considering the induced charge density of surface atoms. Int J Mech Mater Des 16, 475–486 (2020). https://doi.org/10.1007/s10999-020-09489-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-020-09489-8

Keywords

Navigation