Skip to main content
Log in

Appraisal of Hydraulic Flow Units and Factors of the Dynamics and Contamination of Hydrogeological Units in the Littoral Zones: A Case Study of Akwa Ibom State University and Its Environs, Mkpat Enin L.G.A, Nigeria

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Borehole-controlled one-dimensional geo-electric data were integrated with water samples obtained from boreholes drilled near the vertical electrical sounding at 12 locations to assay the dynamic parameters of the water-bearing units in the Akwa Ibom State University and its environs. The study area, situated in the coastal fringe of littoral zones, lies within 4° 30′–4° 35′ N latitudes and 7° 30′–7° 35′ E longitudes. The geophysical results show that the area has five classes of generic curve types, namely HQ \(\left( {\rho_{1} < \rho_{2} > \rho_{3} > \rho_{4} } \right)\) having 16.7% of the curves; HK \(\left( {\rho_{1} < \rho_{2} > \rho_{3} < \rho_{4} } \right)\) having 50% of the curves; KH \(\left( {\rho_{1} > \rho_{2} < \rho_{3} < \rho_{4} } \right)\) having 16.7% of the curves; A \(\left( {\rho_{1} < \rho_{2} > \rho_{3} > \rho_{4} } \right)\) with 8.3% of the curves and QK \(\left( {\rho_{1} > \rho_{2} > \rho_{3} < \rho_{4} } \right)\) with 8.3% of the curves within the water-bearing repositories, which are characterized by depth range and mean values of 54.6–84.7 m and 71.3 m, respectively. Using formation factor, fractional porosity, hydraulic conductivity, permeability, aquifer quality index and flow zone indicator (FZI), hydraulic flow units were predicted with the aid of average cementation factor and pore geometry factor estimated in previous study from cored samples cum water samples in the area. The appraisal of the hydraulic conductivity enabled the estimation of \(0.3\,\upmu{\text{Hz}}\) as drift frequency or drift velocity per unit depth. This estimated value of drift frequency is considered to be very low and hence responsible for retention of pore fluid and subsequent contamination of freshwater within the aquifer system by the saltwater incurred into the aquifer systems from saline water sources during recharge. Based on FZI, two hydraulic units (HUs = 47) occupying 8.3% and (HUs = 50) occupying 91.7% of the entire water-bearing units have been delineated to conform to specific flow zone, which are important in groundwater management. Evidently, the use of stratigraphic boundaries in characterizing the groundwater units have not accounted for the facies changes in hydrokinetic attributes as a wide spectrum of values of permeability conform to a unit FZI. The estimation of hydrokinetic parameters from this method is less expensive, benign and non-invasive. The estimated properties show good correlations and in accordance with documented literatures. This attests to the validity and workability of the method. The typing of water-bearing units on the basis of hydraulic units other than geologic units that do not account for the physical and chemical facies changes is significant in the management of aquifer system in the survey area and is known to be highly susceptible to contaminations from ingress of saltwater into its freshwater geologic units as well as contaminations from other sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

  • Abd-Elhamid, H. F., & Javidi, A. A. (2011). A cost-effective method to control seawater intrusion in coastal aquifers. Water Resource Management, 25(11), 2755–2780.

    Google Scholar 

  • Abed, A. A. (2014). Hydraulic flow units and permeability prediction in a carbonate reservoir, Southern Iraq from well log data using non-parametric correlation. International Journal of Enhanced Research in Science Technology and Engineering, 3(1), 480–486.

    Google Scholar 

  • Akpan, A. E., Ugbaja, A. N., & George, N. J. (2013). Integrated geophysical, geochemical and hydrogeological investigation of shallow groundwater resources in parts of the Ikom-Mamfe Embayment and the adjoining areas in Cross River State, Nigeria. Environmental Earth Sciences, 70(3), 1435–1456.

    Google Scholar 

  • Al-Dhafeeri, A. M., & Nasr-El-Din, H. A. (2007). Characteristics of high permeability zones using core analysis, and production logging data. Journal of Petroleum Science and Engineering, 55, 18–36.

    Google Scholar 

  • Amaefule J. O., Altunbay M., Tiab D., Kersey D. G., & Keelan D. K. (1993). Enhanced reservoir description using core and log data to identify hydraulic (flow) and predict permeability in uncored intervals/wells. In SPE 26436, presented at 68th annual technical conference and exhibition, Houston, Texas.

  • Artiola, J., & K. Uhlman. (2009). An Arizona well owner’s guide to water supply. University of Arizona Extension publication AZ1485.

  • Basack, S., Bhattacharya, A. K., & Maity, P. (2014). A coastal groundwater management model with Indian case study. Proceedings of the Institution of Civil Engineers: Water Management, 167(3), 126–140.

    Google Scholar 

  • Birch, S., Donahue, R., Biggar, K. W., & Sego, D. C. (2007). Prediction of flow rates for potable water supply from directionally drilled horizontal wells in river sediments. Journal of Environmental Engineering ASCE, 6(2), 231–245.

    Google Scholar 

  • Carman, P. C. (1939). Permeability of saturated sands, soils and clays. Journal of Agricultural Science, 29, 263–273.

    Google Scholar 

  • Chandra, T. (2008). Permeability estimation using flow zone indicator from well log data. In International conference and exposition on petroleum geophysics (p. 140).

  • Chandra, S., Ahmed, S., Ram, A., & Dewandal, B. (2008). Estimation of hard rock aquifers hydraulic conductivity from geoelectrical measurements: A theoretical development with field application. Journal of Hydrology, 357(3), 218–227.

    Google Scholar 

  • Das, M. B. (2008). Advanced soil mechanics (p. 594). New York: Taylor & Francis.

    Google Scholar 

  • Dasgupta, S., Chatterjee, R., Mohanty, S. P., & Alam, V. (2019). Pore pressure modelling in a compressional setting: A case study from Assam, NE India. Journal of Petroleum Geology, 42(3), 319–338.

    Google Scholar 

  • Dasgupta, T., & Mukherjee, S. (2019). Compaction of sediments and different compaction models. Emilie Du Châtelet und die deutsche Aufklärung. https://doi.org/10.1007/978-3-030-13442-6_1

  • Dobrin, M. B., & Savit, C. H. (1988). Introduction to geophysical prospecting (4th ed.). New York: McGraw-Hill Book Company.

    Google Scholar 

  • Doust, H., & Omatsola, E. (1990). Niger Delta. In J. D. Edwards & P. A. Santogrossi (Eds.), Divergent/passive margin basins (Vol. 48, pp. 239–248). Tulsa: AAPG Memoir.

    Google Scholar 

  • Ebanks, W., Scheihing, M., & Atkinson, C. (1992). Flow units for reservoir characterization. In D. Morton-Thompson & A. M. Woods (Eds.), Development geology reference manual. American Association of Petroleum Geologists Methods in exploration series (Vol. 10, pp. 282–284). Tulsa: The American Association of Petroleum Geologists.

    Google Scholar 

  • Ekanem, A. M., George N. J., Thomas J. E., & Nathaniel, E. U. (2019). Empirical relations between aquifer Geohydraulic–Geoelectric properties derived from surficial resistivity measurements in parts of Akwa Ibom State, southern Nigeria. Natural Resources Research. https://doi.org/10.1007/s11053-019-09606-1.

  • Evans, U. F., George, N. J., Akpan, A. E., Obot, I. B., & Ikot, A. N. (2010). A study of superficial sediments and aquifers in parts of Uyo local government area, Akwa Ibom State, southern Nigeria, using electrical sounding method. E-Journal of Chemistry, 7(3), 1018–1022.

    Google Scholar 

  • Fabricius, I. L., Baechle, G., Eberli, G. P., & Weger, R. (2007). Estimating permeability of carbonate rocks from porosity and v(p)/v(s). Geophysics, 72(5), E185–E191.

    Google Scholar 

  • Fabricius, I. L., Gommesen, L., Krogsbøll, A., & Olsen, D. (2008). Chalk porosity and sonic velocity versus burial depth: Influence of fluid pressure, hydrocarbons, and mineralogy. AAPG Bulletin, 92(2), 201–223.

    Google Scholar 

  • Fetters, C. W. (1994). Applied hydrogeology (3rd ed., p. 600). New Jersey: Prentice Hall Inc.

    Google Scholar 

  • George, N. J., Akpan, A. E., & Ekanem, A. M. (2016a). Assessment of textural variational pattern and electrical conduction of economic and accessible quaternary hydrolithofacies via geoelectric and laboratory methods in SE Nigeria: A case study of select locations in Akwa Ibom State. Journal of Geological Society of India, 88(4), 517–528.

    Google Scholar 

  • George, N. J., Akpan, A. E., & Evans, U. F. (2016b). Prediction of geohydraulic pore pressure gradient differentials for hydrodynamic assessment of hydrogeological units using geophysical and laboratory techniques: A case study of the coastal sector of Akwa Ibom State, southern Nigeria. Arabian Journal of Geosciences, 9(4), 1–13.

    Google Scholar 

  • George, N. J., Akpan, A. E., & Obot, I. B. (2010). Resistivity study of shallow aquifer in parts of southern Ukanafun Local government area, Akwa Ibom State. E-Journal of Chemistry, 7(3), 693–700.

    Google Scholar 

  • George, N. J., Akpan, A. O., & Umoh, A. A. (2013). Preliminary geophysical investigation to delineate the groundwater conductive zones in the coastal region of Akwa Ibom State, southern Nigeria, around the Gulf of Guinea. International Journal of Geosciences, 4, 108–115.

    Google Scholar 

  • George, N. J., Atat, J. G., Umoren, E. B., & Etebong, I. (2017a). Geophysical exploration to estimate the surface conductivity of residual argillaceous bands in the groundwater repositories of coastal sediments of EOLGA, Nigeria. NRIAG Journal of Astronomy and Geophysics. https://doi.org/10.1016/j.nrjag.2017.02.001.

    Article  Google Scholar 

  • George, N. J., Ekanem, A. M., Ibanga, J. I., & Udosen, N. I. (2017b). Hydrodynamic Implications of Aquifer Quality Index (AQI) and Flow Zone Indicator (FZI) in groundwater abstraction: A case study of coastal hydro-lithofacies in South-eastern Nigeria. Journal of Coastal Conservation. https://doi.org/10.1007/s11852-017-0535-3.

    Article  Google Scholar 

  • George, N. J., Ekong, U. N., & Etuk, S. E. (2014a). Assessment of economically accessible groundwater reserve and its protective capacity in Eastern Obolo Local Government Area of Akwa Ibom State, Nigeria, using electrical resistivity method. Geophysical Journal International, 2014, 1–10.

    Google Scholar 

  • George, N. J., Emah, J. B., & Ekong, U. N. (2015a). Geohydrodynamic properties of hydrogeological units in parts of Niger Delta, southern Nigeria. Journal of African Earth Sciences, 105, 55–63.

    Google Scholar 

  • George, N. J., Ibanga, J. I., & Ubom, A. I. (2015b). Geoelectrohydrogeological indices of evidence of ingress of saline water into freshwater in parts of coastal aquifers of Ikot Abasi, southern Nigeria. Journal of African Earth Sciences, 109, 37–46.

    Google Scholar 

  • George, N. J., Ibuot, J. C., & Obiora, D. N. (2015c). Geoelectrohydraulic parameters of shallow sandy aquifer in Itu, Akwa Ibom State (Nigeria) using geoelectric and hydrogeological measurements. Journal of African Earth Sciences, 110, 52–63.

    Google Scholar 

  • George, N. J., Obianwu, V. I., & Obot, I. B. (2011a). Estimation of groundwater reserve in unconfined frequently exploited depth of aquifer using a combined surficial geophysical and laboratory techniques in the Niger Delta, southern Nigeria. Advances in Applied Science Research, 2(1), 163–177.

    Google Scholar 

  • George, N. J., Obinawu, V. I., & Udofia, K. M. (2011b). Estimation of aquifer hydraulic parameters via complementing surficial geophysical measurement by laboratory measurements on the core samples in southern part of Akwa Ibom State, Nigeria. International Review of Physics, 5(2), 88–97.

    Google Scholar 

  • George, N. J., Ubom, A. I., & Ibanga, J. I. (2014b). Integrated approach to investigate the effect of leachate on groundwater around the Ikot Ekpene Dumpsite in Akwa Ibom State, South-eastern Nigeria. International Journal of Geophysics. https://doi.org/10.1155/2014/174589.

    Article  Google Scholar 

  • Gholinezhad, S., & Masihi, M. (2012). A physical-based model of permeability/porosity relationship for the rock data of Iran Southern Carbonate Reservoirs. Iranian Journal of Oil and Gas Science and Technology, 1(1), 25–36.

    Google Scholar 

  • Gurunadha Rao, V. V. S., Tamma Rao, G., Surinaidu, L., Rajesh, R., & Mahesh, J. (2011). Geophysical and geochemical approach for Seawater Intrusion Assessment in the Godavari Delta Basin, A.P., India. Water, Air, and Soil pollution, 217, 503–514.

    Google Scholar 

  • Henriet, J. P. (1976). Direct application of Dar-Zarrouk parameters in groundwater survey. Geophysical Prospecting, 24, 344–353.

    Google Scholar 

  • Ibanga, J. I., & George, N. J. (2016). Estimating geohydraulic parameters, protective strength, and corrosivity of hydrogeological units: A case study of ALSCON, Ikot Abasi, southern Nigeria. Arabian Journal of Geosciences, 9(5), 1–16.

    Google Scholar 

  • Ibuot, J. C., Akpabio, G. T., & George, N. J. (2013). A survey of the repository of groundwater potential and distribution using geoelectrical resistivity method in Itu Local Government Area (L.G.A), Akwa Ibom State, southern Nigeria. Central European Journal of Geosciences, 5(4), 538–547.

    Google Scholar 

  • Ibuot, J. C., George, N. J., Okwesili, A. N., & Obiora, D. N. (2019). Investigation of litho-textural characteristics of aquifer in Nkanu West Local Government Area of Enugu state, southeastern Nigeria. Journal of African Earth Sciences, 153, 197–207.

    Google Scholar 

  • Inman, J. R. (1975). Resistivity inversion with ridge regression. Geophysics, 40, 798–817.

    Google Scholar 

  • Karanth, K. R. (1987). Groundwater assessment development and management. New Delhi: Tata McGraw-Hill.

    Google Scholar 

  • Keller, G. V., & Frischknecht, F. C. (1966). Electrical methods in geophysical prospecting (p. 517). London: Pergamon.

    Google Scholar 

  • Khabbazi, A. E., Ellis, J. S., & Bazylak, A. (2013). Developing a new form of the Kozeny–Carman parameter for structured porous media through Lattice-Boltzmann modelling. Computers & Fluids, 75, 35–52.

    Google Scholar 

  • Kozeny, J. (1927). Ueber kapillare leitung des wassers im boden: Sitzungsberichte der. Akademie der Wissenschaften in Wien, 136, 271–306.

    Google Scholar 

  • Magara, K. (1980). Comparison of porosity-depth relationships of shale and sandstone. Journal of Petroleum Geology, 3(2), 175–185.

    Google Scholar 

  • Maillet, R. (1947). The fundamental equation of electrical prospecting. Geophysics, 12, 529–556.

    Google Scholar 

  • Nganje, T. N., Edet, A. E., & Ekwere, S. J. (2007). Concentrations of heavy metals and hydrocarbons in groundwater near petrol stations and mechanic workshops in Calabar metropolis, southeastern Nigeria. Journal of Environmental Geosciences, 14(1), 15–29.

    Google Scholar 

  • Nooruddin, H., & Hossain, M. E. (2012). Modified Kozeny–Carmen correlation for enhanced hydraulic flow unit characterization. Journal of Petroleum Science and Engineering, 80, 107–115.

    Google Scholar 

  • Obinawu, V. I., George, N. J., & Udofia, K. M. (2011). Estimation of aquifer hydraulic conductivity and effective porosity distributions using laboratory measurements on core samples in the Niger Delta, southern Nigeria. International Review of Physics, 5(1), 19–24.

    Google Scholar 

  • Orellana, E., & Mooney, A. M. (1966). Master curve and tables for vertical electrical sounding over layered structures. Spain: Interciencia, Escuela.

    Google Scholar 

  • Prasad, M. (2003). Velocity–permeability relations within hydraulic units. Geophysics, 68, 108–117.

    Google Scholar 

  • Rao, S. V. N., & Sreenivasulu, V. (2004). Planning groundwater development in coastal aquifers. Hydrological Science, 49(1), 155–170.

    Google Scholar 

  • Rapti-Caputo, D. (2010). Influence of climatic changes and human activities on the salinization process of coastal aquifer systems. Italian Journal of Agronomy/River Agronomy, 3, 67–79.

    Google Scholar 

  • Reijers, T. J. A., Petters, S. W., & Nwajide, C. S. (1979). The Niger Delta basin. In R. C. Selley (Ed.), African basins-sedimentary basin of the World 3 (pp. 151–172). Amsterdam: Elsevier.

    Google Scholar 

  • Rijkswaterstaat. (1969). Standard graphs for resistivity prospecting, European Association of Exploration Geophysicists, The Netherlands, The Hague.

  • Savage, H. M., & Polissar, P. J. (2019). Biomarker thermal maturity reveals localized temperature rise from paleoseismic slip along the punchbowl fault, CA, USA. Geochemistry, Geophysics, Geosystems, 20(7), 3201–3215.

    Google Scholar 

  • Shenawi, S., Al-Mohammadi, H., & Faqehy, M. (2009). Development of generalized porosity-permeability transforms by hydraulic units for carbonate oil reservoirs in Saudi Arabia. In SPE/EAGE reservoir characterization and simulation conference, Abu Dhabi, UAE, October 19–21, 2009, SPE 125380.

  • Soupios, P. M., Kouli, M., Vallianatos, F., Vafidis, A., & Stavroulakis, G. (2007). Estimation of aquifer hydraulic parameters from surficial geophysical methods: A case study of Keritis Basin in Chania (Crete – Greece). Journal of Hydrology, 338, 122–131.

    Google Scholar 

  • Tiab, D., & Donaldson, E. C. (2004). Petrophysics (p. 105). Amsterdam: Elsevier.

    Google Scholar 

  • Vender Velpen, B. P. A. (1988). A computer processing package for DC resistivity interpretation for IBM compatibles. ITC Journal, 4. The Netherlands.

  • Xia, L., Liu, Z., Li, W., Chunlan, Yu., & Zhang, W. (2018). Initial porosity and compaction of consolidated sandstone in Hangjin Qi, North Ordos Basin. Journal of Petroleum Science and Engineering, 166, 324–336. https://doi.org/10.1016/j.petrol.2018.02.060.

    Article  Google Scholar 

  • Zhong, D. K., Zhu, X. M., & Wang, H. J. (2008). Characteristics and formation mechanism analysis of deep buried sandstone reservoirs in China. Science China, 38(S1), 11–18.

    Google Scholar 

Download references

Acknowledgments

The author is grateful to the Geophysics Research Group members who read and criticized the work technically and grammatically. The editor and the anonymous reviewers are greatly acknowledged for their constructive criticisms and suggestions that improved the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nyakno J. George.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, N.J. Appraisal of Hydraulic Flow Units and Factors of the Dynamics and Contamination of Hydrogeological Units in the Littoral Zones: A Case Study of Akwa Ibom State University and Its Environs, Mkpat Enin L.G.A, Nigeria. Nat Resour Res 29, 3771–3788 (2020). https://doi.org/10.1007/s11053-020-09673-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-020-09673-9

Keywords

Navigation