Skip to main content
Log in

A New Semi-greedy Approach to Enhance Drillhole Planning

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

In advanced exploration projects or operating mines, the process of allocating capital for infill drilling programs is a significant and recurrent challenge. Within a large company, the different mine sites and projects compete for the available funds for drilling. To maximize a project’s value to its company, a drillhole location optimizer can be used as an objective tool to compare drilling campaigns. The fast semi-greedy optimizer presented here can allow for the obtention of close to optimal solutions to the coverage problem with up to three orders of magnitude less computing time needed than with integer programming. The heuristic approach is flexible as it allows dynamic updating of block values once new drillholes are selected in the solution, as opposed to existing methods based on static block values. The block values used for optimization incorporate kriging estimate and variance, estimate of indicator at cutoff grade and distances to existing or newly selected drillholes. The heuristic approach tends to locate new drillholes within the maximum risk areas, i.e., within less informed zones predicted as being ore zones. Applied to different deposits, it enables, after suitable normalization, comparison of different drilling campaigns and allocation of budgets accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Bilal, N. (2014). Métaheuristiques hybrides pour les problèmes de recouvrement et recouvrementpartiel d’ensembles appliqués au problème de positionnement des trous de forage dans les mines.Ph.D. thesis Polytechnique Montréal.

  • Bilal, N., Galinier, P., & Guibault, F. (2013). A new formulation of the set covering problem formetaheuristic approaches. ISRN Operations Research, 2013.

  • Bilal, N., Galinier, P., & Guibault, F. (2014). An iterated-tabu-search heuristic for a variant of the partial set covering problem. Journal of Heuristics, 20, 143–164.

    Article  Google Scholar 

  • Chilès, J.-P., & Delfiner, P. (2012). Geostatistics. Berlin: Wiley. https://doi.org/10.1002/9781118136188.

    Book  Google Scholar 

  • Daoust, C., Voicu, G., Brisson, H., & Gauthier, M. (2011). Geological setting of the Paleoproterozoic Rosebel gold district, Guiana shield, Suriname. Journal of South American Earth Sciences, 32, 222–245.

    Article  Google Scholar 

  • Fatehi, M., Haroni, H. A., & Morshedy, A. H. (2017). Designing infill directional drilling in mineral exploration by using particle swarm optimization algorithm. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-017-3209-4.

    Article  Google Scholar 

  • Gershon, M., Allen, L. E., & Manley, G. (1988). Application of a new approach for drillholes location optimization. International Journal of Surface Mining, Reclamation, and Environment, 2, 27–31.

    Article  Google Scholar 

  • Hart, J. P., & Shogan, A. W. (1987). Semi-greedy heuristics: An empirical study. Operations Research Letters, 6, 107–114.

    Article  Google Scholar 

  • Jafrasteh, B., & Fathianpour, N. (2017). Optimal location of additional exploratory drillholes using a fuzzy-artificial bee colony algorithm. Arabian Journal of Geosciences, 10, 213. https://doi.org/10.1007/s12517-017-2948-6.

    Article  Google Scholar 

  • Journel, A. G. (1974). Geostatistics for conditional simulation of ore bodies. Economic Geology, 69, 673–687.

    Article  Google Scholar 

  • Journel, A. G. (1982). The indicator approach to estimation of spatial distributions. In Proceedings of the 17th APCOM international symposium. New York (pp. 793–806).

  • Karp, R. M. (1972). Reducibility among combinatorial problems. In Complexity of computer computations (pp. 85–103). Berlin: Springer. https://doi.org/10.1007/978-1-4684-2001-2_9.

  • Kim, Y. C., Myers, D. E., & Knudsen, H. (1977). Advanced geostatistics in ore reserve estimation and mine planning (practitioner’s guide). Technical report Arizona Univ.

  • Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671–680.

    Article  Google Scholar 

  • Matheron, G. (1973). The intrinsic random functions and their applications. Advances in Applied Probability, 5, 439–468.

    Article  Google Scholar 

  • McBratney, A., Webster, R., & Burgess, T. (1981). The design of optimal sampling schemes for local estimation and mapping of regionalized variables—I: Theory and method. Computers and Geosciences, 7, 331–334.

    Article  Google Scholar 

  • Mohammadi, S. S., Hezarkhani, A., & Tercan, A. E. (2012). Optimally locating additional drillholes in three dimensions using grade and simulated annealing. Journal of the Geological Society of India, 80, 700–706.

    Article  Google Scholar 

  • Parker, H. M. (2012). Reconciliation principles for the mining industry. Mining Technology, 121, 160–176.

    Article  Google Scholar 

  • Pilger, G. G., Costa, J. F. C. L., & Koppe, J. C. (2001). Additional samples: Where they should be located. Natural Resources Research, 10, 197–207.

    Article  Google Scholar 

  • Pinheiro, M., Emery, X., Rocha, A. M. A., Miranda, T., & Lamas, L. (2017). Drillholes plans optimization methodology combining geostatistical simulation and simulated annealing. Tunnelling and Underground Space Technology, 70, 65–75.

    Google Scholar 

  • Scheck, D. E., & Chou, D.-R. (1983). Optimum locations for exploratory drillholes. International Journal of Mining Engineering, 1, 343–355.

    Google Scholar 

  • Soltani, S., Hezarkhani, A., Erhan Tercan, A., & Karimi, B. (2011). Use of genetic algorithm in optimally locating additional drillholes. Journal of Mining Science, 47, 62–72.

    Article  Google Scholar 

  • Zagré, G. E., Marcotte, D., Gamache, M., & Guibault, F. (2018). New tabu algorithm for positioning mining drillholes with blocks uncertainty. Natural Resources Research, 28, 609–629.

    Article  Google Scholar 

Download references

Acknowledgments

This research was made possible by National Research Council of Canada thru NSERC Grant (RGPIN-2015-06653). We thank IAMGOLD Corp. for providing data used in this study. The authors would like to thank Mehanaz Yakub for her help and advises.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaël Dutaut.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutaut, R., Marcotte, D. A New Semi-greedy Approach to Enhance Drillhole Planning. Nat Resour Res 29, 3599–3612 (2020). https://doi.org/10.1007/s11053-020-09674-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-020-09674-8

Keywords

Navigation