Skip to main content
Log in

Comparison of Smectite–Corrensite–Chlorite Series Minerals in the Todoroki and Hishikari Au–Ag Deposits: Applicability of Mineralogical Properties as Exploration Index for Epithermal Systems

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The tri-smectite(S)–corrensite(Co)–chlorite(C) series minerals from two epithermal deposits show a discontinuous stepwise sequence of different mixed-layering of chlorite and smectite layers, and there are differences in the mode of occurrence of the two deposits. The Al/Si ratios and Fe/(Fe + Mg) ratios of the S–Co–C minerals vary closely related to mixed-layering and mode of occurrence. The S–Co–C minerals as a product of direct precipitation from ascending hydrothermal solutions may reflect fluid chemistry that originated in water–rock interaction at deeper strata. The differences in mixed-layering of the S–Co–C series minerals may be related to different thermal and redox conditions affected by fluid mixing and boiling, and to kinetic factor such as time length of hydrothermal activity that affected vein formation. The corrensite and Co–C minerals as a product of hydrothermal alteration involving dissolution, re-precipitation, and crystallization, may undergo smectite-to-chlorite transformation in epithermal systems. The transformation and distribution of corrensite and Co–C minerals in the host rocks around vein areas may have been controlled by thermal conditions related to fluid mixing and water/rock ratios. In addition, the corrensite and Co–C minerals with high Fe/(Fe + Mg) ratios may be affected by the host rock. The factors influencing the conversion of the S–Co–C series minerals may be similar in both ore veins and host rocks. However, it is emphasized that fluid/rock ratios may be a major factor influencing the conversion of the S–Co–S series minerals in host rocks. Additionally, the time length of hydrothermal activity that affected vein formation may be an important factor influencing the conversion of the S–Co–C series minerals in ore veins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Bailey, S. W. (1982). Nomenclature for regular interstratifications. American Mineralogist, 67, 394–398.

    Google Scholar 

  • Barrenechea, J. F., Rodas, M., Frey, M., Alonso-Azcarate, J., & Mas, J. R. (2000). Chlorite, corrensite, anchlorite-mica in Late Jurassic fluvio-lacustrine sediments of the Cameros basin of Northeastern Spain. Clays and Clay Minerals, 48, 256–265.

    Article  Google Scholar 

  • Beaufort, D., Baronnet, A., Lanson, B., & Meunier, A. (1997). Corrensite: A single phase or a interstratified phyllosilicate in the saponite-to-chlorite conversion series? A case study of Sancerre-Couy deep drill hole (France). American Mineralogist, 82, 109–124.

    Article  Google Scholar 

  • Beaufort, D., Rigault, C., Billon, S., Billault, V., Inoue, A., Inoue, S., et al. (2015). Chlorite and chloritization processes through mixed layer mineral series in low-temperature geological systems—A review. Clay Minerals, 50, 497–523.

    Article  Google Scholar 

  • Bettison-Varga, L., & Mackinnon, I. D. R. (1997). The role of randomly mixed-layered chlorite/smectite in the transformation of smectite to chlorite. Clays and Clay Minerals, 45, 506–516.

    Article  Google Scholar 

  • Bove, D. J., Eberl, D. D., McCarty, D. K., & Meeker, G. P. (2002). Characterization and modeling of illite crystal particles and growth mechanisms in a zoned hydrothermal deposit, Lake City, Colorado. Ameriican Minneralogist, 87, 1546–1556.

    Article  Google Scholar 

  • Buatier, M. D., Frṻh-Green, G. L., & Karpoff, A. M. (1995). Mechanisms of Mg-phyllosilicate formation in a sedimented ridge (Middle Valley, Juan de Fuca). Contributions to Mineralogy and Petrology, 122, 134–151.

    Article  Google Scholar 

  • Etoh, J., Izawa, E., & Taguchi, S. (2002a). A fluid inclusion study on columnar adularia from the Hishikari low-sulfidation epithermal gold deposit, Japan. Resource Geology, 52, 73–78.

    Article  Google Scholar 

  • Etoh, J., Izawa, E., Watanabe, K., Taguchi, S., & Sekine, R. (2002b). Bladed quartz and its relationship to gold mineralization in the Hishikari low-sulfidation epithermal gold deposit. Economic Geology, 97, 1841–1851.

    Article  Google Scholar 

  • Forsythe, N. A., Spry, P. G., & Thompson, M. L. (2019). Petrological and mineralogical aspects of epithermal low-sulfidation Au- and porphyry Cu-style mineralization, Navilawa Caldera. Fiji. Geosciences, 9(1), 42. https://doi.org/10.3390/geosciences9010042.

    Article  Google Scholar 

  • Fulignati, P., Malfitano, G., & Sbrana, A. (1997). The Pantelleria caldera geothermal system: data from the hydrothermal minerals. Journal of Volcanology and Geothermal Research, 75(3–4), 251–270.

    Article  Google Scholar 

  • Hayashi, K., Maruyama, T., & Satoh, H. (2001). Precipitation of gold in a low-sulfidation epithermal gold deposit: insights from a submillimeter scale oxygen isotope analysis of vein quartz. Economic Geology, 96, 211–216.

    Article  Google Scholar 

  • Hedenquist, J. W., Izawa, E., Arribas, A., & White, N. C. (1996). Epithermal gold deposits: Styles, characteristics and exploration. Tokyo: The Society of Resource Geology.

    Google Scholar 

  • Hedenquist, J. W., & Lowenstern, J. W. (1994). The role of magmas in the formation of hydrothermal ore deposits. Nature, 370, 519–527.

    Article  Google Scholar 

  • Hulen, J. B., & Lutz, S. J. (1999). Altered volcanic rocks as hydrologic seals on the geothermal system of Medicine Lake volcano. California. Geothermal Resources Council Bulletin, 28(7), 217–222.

    Google Scholar 

  • Ibaraki, K., & Suzuki, R. (1990). Wall-rock alteration in the Hishikari gold mine, Kagoshima Prefecture, Japan. Mining Geology, 40, 97–106. (in Japanese with English abstract).

    Google Scholar 

  • Ibaraki, K., & Suzuki, R. (1993). Gold-silver quartz-adularia veins of the Main, Yamada and Sanjin deposits, Hishikari gold mine; a comparative study of their geology and ore deposits. Resource Geology Special Issue, 14, 1–11.

    Google Scholar 

  • Imai, A., Shimazaki, H., & Nishizawa, T. (1998). Hydrogen isotope study of fluid inclusions in vein quartz of the Hishikari gold deposits, Japan. Resource Geology, 48, 159–170.

    Article  Google Scholar 

  • Inoue, A. (1995). Formation of clay minerals in hydrothermal environments. In B. Velde (Ed.), Origin and mineralogy of clays (pp. 268–329). Berlin: Springer.

    Chapter  Google Scholar 

  • Inoue, A., Lanson, B., Marques-Fernandes, M., Sakharov, B. A., Murakami, T., Meunier, A., et al. (2005). Illite-Smectite mixed-layer minerals in the hydrothermal alteration of volcanic rocks: I. One-dimensionaL Xrd structure analysis and characterization of component layers, Clays and Clay Minerals, 53(5), 423–439.

    Google Scholar 

  • Inoue, A., & Utada, M. (1991). Smectite-to-chlorite transformation in thermally metamorphosed volcanoclastic rocks in the Kamikita area, northern Honshu, Japan. American Mineralogist, 76, 628–640.

    Google Scholar 

  • Izawa, E., Kurihara, M., & Itaya, T. (1993). K-Ar ages and initial Ar isotopic ratio of adularia-quartz veins from the Hishikari gold deposit, Japan. Resource Geology Spec. Issue, 14, 63–69.

    Google Scholar 

  • Izawa, E., Urashima, Y., Ibaraki, K., Suzuki, R., Yokoyama, T., Kawasaki, K., et al. (1990). The Hishikari gold deposit: high-grade epithermal veins in Quaternary volcanics of southern Kyushu, Japan. Journal of Geochemical Exploration, 36, 1–56.

    Article  Google Scholar 

  • Kim, J. W., & Peacor, D. R. (2002). Crystal-size distributions of clays during episodic diagenesis: the Salton Sea geothermal system. Clays and Clay Minerals, 50(3), 371–380.

    Article  Google Scholar 

  • Kralj, P. (2016). Hydrothermal alteration of chlorite to randomly interstratified corrensite-chlorite: Geological evidence from the oligocene Smrekovec volcanic complex, Slovenia. Applied Clay Science, 134(3), 235–245.

    Article  Google Scholar 

  • Meunier, A. (2003). Crystal structure—Species—Crystallisation. Clays (pp. 1–60). Berlin: Springer.

    Google Scholar 

  • Meyer, C., & Hemley, J. (1967). Wall-rock alteration. In H. L. Barnes (Ed.), Geochemistry of hydrothermal ore deposits (pp. 166–235). Holt: Rinehart & Winston Inc.

    Google Scholar 

  • Miron, G. D., Neuhoff, P. S., & Amthauer, G. (2012). Low-temperature hydrothermal metamorphic mineralization of island-arc volcanics, south Apuseni mountains, Romania. Clays and Clay Minerals, 60(1), 1–17.

    Article  Google Scholar 

  • Morishita, Y., Shimada, N., & Shimada, K. (2018). Invisible gold in arsenian pyrite from the high-grade Hishikari gold deposit, Japan: Significance of variation and distribution of Au/As ratios in pyrite. Ore Geology Reviews, 95, 79–93.

    Article  Google Scholar 

  • Mosser-Ruck, R., Pignatelli, I., Bourdelle, F., Abdelmoula, M., Barres, O., Guillaume, D., et al. (2016). Contribution of long-term hydrothermal experiments for understanding the smectite-to-chlorite conversion in geological environments. Contributions to Mineralogy and Petrology, 171(97), 1. https://doi.org/10.1007/s00410-016-1307-z.

    Article  Google Scholar 

  • Murakami, H. (2007). Variations in chemical compositions of clay minerals and magnetic susceptibility of hydrothermally altered rocks in the Hishikari epithermal gold deposit, SW Kyushu, Japan. Resource Geology, 58, 1–24.

    Article  Google Scholar 

  • Murakami, T., Sato, T., & Inoue, A. (1999). HRTEM evidence for the process and mechanism of saponite-to-chlorite conversion through corrensite. American Mineralogist, 84, 1080–1087.

    Article  Google Scholar 

  • Murata, K., Koyama, M., & Sekine, R. (2008). Ongoing exploration and development of the newly developed vein groups in the surrounding areas of the Yamada deposit, Hishikari Mine. Shigenchishitsu, 58(2), l11–119. (in Japanese with English abstract).

    Google Scholar 

  • Nagayama, T. (1993). Precipitation sequence of veins at the Hishikari deposits, Kyushu, Japan. Resource Geology Special Issue, 14, 13–27.

    Google Scholar 

  • Naito, K., Matsuhisa, Y., Izawa, E., & Takaoka, H. (1993). Oxygen isotopic zonation of hydrothermally altered rocks in the Hishikari gold deposit, southern Kyushu, Japan. Resource Geology Spec. Issue, 14, 29–36.

    Google Scholar 

  • NEDO. (1995). Geothermal development promotion survey project No 36—the Amemasu-dake area. Tokyo: New Energy and Industrial Technology Development Organization. (in Japanese).

    Google Scholar 

  • Patrier, P., Papapanagiotou, P., Beaufort, D., Traineau, H., Bril, H., & Rojas, J. (1996). Role of permeability vs temperature in the distribution of the fine (< 0.2 µm) clay fraction in the Chipilapa geothermal system (EI Salvador, Central America). Journal of Volcanology and Geothermal Research, 72, 101–120.

    Article  Google Scholar 

  • Reynolds, R. C., Jr. (1985). NEWMOD, a computer program for the calculation of the basal diffraction intensities of mixed-layered clay minerals. Hanover: R. C. Reynolds.

    Google Scholar 

  • Robinson, D., Schmidt, S. T., & Santana de Zamora, A. (2002). Reaction pathways and reaction progress for the smectite-to-chlorite transformation: evidence from hydrothermally altered metabasites. Metamorphic Geology, 20, 167–174.

    Article  Google Scholar 

  • Rose, A. W., & Burt, D. M. (1979). Hydrothermal alteration. In H. L. Barnes (Ed.), Geochemistry of hydrothermal ore deposits (pp. 173–235). New York: Wiley.

    Google Scholar 

  • Sanematsu, K., Duncan, R., Imai, A., & Watanabe, K. (2005). Geochronological constraints using 40Ar/39Ar dating on the mineralization of the Hishikari epithermal gold deposit, Japan. Resource Geology, 55, 249–266.

    Article  Google Scholar 

  • Sawai, O., Yoneda, T., & Itaya, T. (1992). K-Ar ages of the chitose, todoroki and teine Au–Ag vein-type deposits, southwest Hokkaido, Japan. Mining Geology, 42, 323–330. (in Japanese with English abstract).

    Google Scholar 

  • Schiffman, P., & Fridleiffson, G. O. (1991). The smectite to chlorite transition in drillhole NJ-15, Hesjavellir geothermal field, Iceland: XRD, BSE and electron microprobe investigations. Journal of Metamorphic Geology, 9, 679–696.

    Article  Google Scholar 

  • Schiffman, P., & Staudigel, H. (1995). The smectite to chlorite transition in a fossil seamount hydrothermal system: The basement complex of La Palma, Canary Islands. Journal of Metamorphic Geology, 13, 487–498.

    Article  Google Scholar 

  • Sekine, R., Morimoto, K., & Ushirone, N. (1998). Characteristics of the Yamada vein system, Hishikari mine, Kyusyu, Southwestern Japan. Resource Geology, 48, 1–8. (in Japanese with English abstract).

    Article  Google Scholar 

  • Sekinw, R., Izawa, E., & Watanabe, K. (2002). Timing of fracture formation and duration of mineralization at the Hishikari deposit, southern Kyushu, Japan. Resource Geology, 52(4), 395–404.

    Article  Google Scholar 

  • Shau, Y. H., & Peacor, D. R. (1992). Phyllosilicates in hydrothermally altered basalts from DSDP Hole 504B, Leg 83—A TEM and AEM study. Contributions to Mineralogy and Petrology, 112, 119–133.

    Article  Google Scholar 

  • Shikazono, N. (1988). Hydrothermal alteration associated with epithermal vein-type deposits in Japan: A review. Mining Geology Special Issue, 12, 47–55.

    Google Scholar 

  • Shikazono, N. (2003). Geochemical and tectonic evolution of arc-backarc hydrothermal systems. Amsterdam: Elsevier.

    Google Scholar 

  • Shikazono, N., & Takahashi, H. (2010). Compositional variation of hydrothermally altered volcanic rocks in Hishikari gold epithermal system: A useful geochemical indicator of gold–silver epithermal mineralization. Resource Geology, 60(2), 117–128.

    Article  Google Scholar 

  • Shikazono, N., Yonekawa, N., & Karakizawa, T. (2002). Mass transfer, oxygen isotopic variation and gold precipitation in epithermal system: A case study of the Hishikari deposit, southern Kyushu, Japan. Resource Geology, 52(3), 211–222.

    Article  Google Scholar 

  • Shimizu, T. (2018). Fluid inclusion studies of comb quartz and stibnite at the Hishikari Au–Ag epithermal deposit, Japan. Resource Geology, 68(3), 326–335.

    Article  Google Scholar 

  • Simmons, S. F., & Browne, P. R. L. (2000). Hydrothermal minerals and precious metals in the Broadlands-Ohaaki geothermal system: Implications for understanding low-sulfidation epithermal environments. Economic Geology, 95, 971–999.

    Article  Google Scholar 

  • Środoń, J., Kuzmenkova, O., Stanek, J. J., Petit, S., Beaufort, D., Gilg, H. A., et al. (2019). Hydrothermal alteration of the Ediacaran Volyn-Brest volcanics on the western margin of the East European Craton. Precambrian Research. https://doi.org/10.1016/j.precamres.2019.02.015.

    Article  Google Scholar 

  • Taguchi, S., & Watanabe, T. (1973). Clay minerals especially interstratified chlorite/saponite associated with gold ores of the Fuke mine, Kagoshima prefecture. Science Reports, Department of Geology, Kyushu University, 11, 243–250. (in Japanese with English abstract).

    Google Scholar 

  • Takahashi, R., Tagiri, R., Blamey, N. J. F., Imai, A., Watanabe, Y., & Takeuchi, Y. (2017). Characteristics and behavior of hydrothermal fluids for gold mineralization at the Hishikari deposits, Kyushu, Japan. Resource Geology, 67(3), 279–299.

    Article  Google Scholar 

  • Takeuchi, K. (1984). Clay minerals in Arakawa No. 4 vein of the Kushikino mine. Mining Geology, 34, 335–342. (in Japanese with English abstract).

    Google Scholar 

  • Tohma, Y., Imai, A., Sanematsu, K., Yonezu, K., Takahashi, R., Koyama, M., et al. (2010). Characteristics and mineralization age of the Fukusen No. 1 Vein, Hishikari epithermal gold deposits, southern Kyushu, Japan. Resource Geology, 60, 348–358.

    Article  Google Scholar 

  • Utada, M. (1980). Hydrothermal alterations related to igneous activity in Cretaceous and Neogene formations of Japan. Mining Geology Special Issue, 8, 67–83.

    Google Scholar 

  • Vidal, O., Baldeyrou, A., Beaufort, D., Fritz, B., Geoffroy, N., & Lanson, B. (2012). Experimental study of the stability and phase relations of clays at high temperature in a thermal gradient. Clays and Clay Minerals, 60, 200–225.

    Article  Google Scholar 

  • White, N. C., & Hedenquist, J. W. (1990). Epithermal environments and styles of mineralization: Variations and their causes, and guideline for exploration. Journal of Geochemical Exploration, 36, 445–474.

    Article  Google Scholar 

  • Yamato, Y., Ohno, M., & Ushirone, N. (2002). Exploration and development of the Yusen No. 1 vein group based on the vein structure, Yamada deposit, Hishikari Mine. Shigenchishitsu, 52(1), 11–17. (in Japanese with English abstract).

    Google Scholar 

  • Yoneda, T. (1994). Applied mineralogical study of clays from hydrothermal ore deposits. Ph.D. thesis, Kyushu University, Japan (in Japanese).

  • Yoneda, T., & Watanabe, T. (1989). Chemical composition of regularly interstratified chlorite/smectite in the ores from some Neogene gold-silver vein-type deposits in Japan. Mining Geology, 39, 181–190. (in Japanese with English abstract).

    Google Scholar 

  • Yoneda, T., Watanabe, T., & Sato, T. (2016). Mineralogical aspects of interstratified chlorite-smectite associated with epithermal ore veins: A case study of the Todoroki Au-Ag ore deposit, Japan. Clay Minerals, 51, 653–674.

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank Sumitomo Metal Mining for facilitating the underground work, a special thanks goes to Messrs. R. Sekine, K. Morimoto, and H. Shimakura for the help during the field work, and to Mr. T. Seto for useful comments on the manuscript. The authors also thank Prof. E. Izawa for discussions, and are grateful to guest editor and two anonymous referees for their helpful and valuable comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yoneda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoneda, T., Mokko, H., Matsumoto, A. et al. Comparison of Smectite–Corrensite–Chlorite Series Minerals in the Todoroki and Hishikari Au–Ag Deposits: Applicability of Mineralogical Properties as Exploration Index for Epithermal Systems. Nat Resour Res 30, 2889–2908 (2021). https://doi.org/10.1007/s11053-020-09672-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-020-09672-w

Keywords

Navigation