Skip to main content
Log in

Preparation of MWCNT/PDMS Conductive Micro-Patterned Nanocomposites

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Conductive multi-walled carbon nanotube (MWCNT)/polydimethylsiloxane (PDMS) nanocomposites were prepared via solution method and their conductive micro-patterns were made using the doctor blade technique. The prepared patterns were characterized via scanning electron microscopy (SEM), cyclic voltam-metry, and four-point probe conductivity meter. SEM images of the cross-sections of micro-patterns revealed that by increasing MWCNT concentration from 5 to 10%, while the dense and smooth bulk structure converted to a brittle one, their conductivities raised from 0.07 up to 0.33 S/cm. These micro-patterns preserved their conductivities under high bending cycles except for high MWCNT loading which loses almost half of its conductivity. The cyclic voltammetry analyses showed that MWCNT/ PDMS conductive micro-patterns had supercapacitor properties. The specific capacitance of the composite containing 10 wt% of MWCNT was 0.35 F/g These nanocomposites can be used in cochlear implants due to their high conductivities. Their low working voltages ensure the safety of the neural tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Dahiya and S. Gennaro, IEEE Sensors J., 13, 4030 (2013).

    CAS  Google Scholar 

  2. T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Naja-fabadi, D. N. Futaba, and K. Hata, Nat Nanotechnol, 6, 296 (2011).

    CAS  PubMed  Google Scholar 

  3. M. C. McAlpine, R. S. Friedman, and C. M. Lieber, Proceedings of the IEEE, 93, 1357 (2005).

    CAS  Google Scholar 

  4. B. Wang, B.-K. Lee, M.-J. Kwak, and D.-W. Lee, Rev. Sci. Instrum., 84, 105005 (2013).

    PubMed  Google Scholar 

  5. Y. Kim, O. Y. Kweon, Y. Won, and J. H. Oh, Macromol Res., 27, 625 (2019).

    CAS  Google Scholar 

  6. J. H. Lee, B. Chung, S. Park, H. C. Moon, and D. H. Lee, Macromol. Res., 26, 157 (2018).

    CAS  Google Scholar 

  7. Y.-J. Lim, K-Y. Shin, and S.-S. Lee, Macromol. Res., 28, 221 (2020).

    CAS  Google Scholar 

  8. M. M. Mowes, F. Fleck, and M. Kluppel, Rubber Chem. Technol., 87, 70 (2014).

    Google Scholar 

  9. T. Gupta, B. Singh, S. Teotia, V. Katyal, S. Dhakate, and R. thur, J. Polym. Res., 20, 169 (2013).

    Google Scholar 

  10. X. Liu, W. Kuang and B. Guo, Polymer, 56, 553 (2015).

    CAS  Google Scholar 

  11. A. Sepulveda, R. G. de Villoria, J. Viana, A. Pontes, B. Wardle, and L. A. Rocha, Nanoscale, 5, 4847 (2013).

    CAS  PubMed  Google Scholar 

  12. Y.-S. Choi, M.-J. Gwak, and D.-W. Lee, Rev. Sci. Instrum., 87, 105004 (2016).

    PubMed  Google Scholar 

  13. J. Xiong, Z. Zheng, X. Qin, M. Li, H. Li, and X. Wang, Carbon, 44, 2701 (2006).

    CAS  Google Scholar 

  14. C.-L. Wu, H.-C. Lin, J.-S. Hsu, M.-C. Yip, and W. Fang, Thin Solid Films, 517, 4895 (2009).

    CAS  Google Scholar 

  15. S. Sawano, K. Naka, A. Werber, H. Zappe, and S. Konishi, in 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems, IEEE 2008,pp 419–422.

    Google Scholar 

  16. D. Kim and K-S. Yun, Microsyst Technol, 19, 743 (2013).

    CAS  Google Scholar 

  17. T. Yamamoto, T. Fujii, and T. Nojima, Lab on a Chip, 2, 197 (2002).

    CAS  PubMed  Google Scholar 

  18. A. Khosla and B. Gray, Mater. Lett, 63, 1203 (2009).

    CAS  Google Scholar 

  19. J. Hong, D. W. Park, and S. E. Shim, Macromol. Res., 20, 465 (2012).

    CAS  Google Scholar 

  20. M. Kujawski, J. Pearse, and E. Smela, Carbon, 48, 2409 (2010).

    CAS  Google Scholar 

  21. S. Bauer, S. Bauer-Gogonea, I. Graz, M. Kaltenbrunner, C. Keplinger, and R. Schwodiauer, Adv. Mater, 26, 149 (2014).

    CAS  PubMed  Google Scholar 

  22. S. Watcharotone, D. A. Dikin, S. Stankovich, R. Piner, I. Jung G. H. Dom-mett, G. Evmenenko, S.-E. Wu, S.-F. Chen, and C.-P. Liu, Nano Lett, 7, 1888 (2007).

    CAS  PubMed  Google Scholar 

  23. J. Du, J. Bai, and H. Cheng, Express Polym. Lett, 1, 253 (2007).

    CAS  Google Scholar 

  24. M. Shahzad, M. Giorcelli, N. Shahzad, S. Guastella, M. Castellino, P. Jagdale, and A. Tagliaferro, Journal of Physics: Conference Series, IOP Publishing, 2013, Vol. 439, p 012010.

    Google Scholar 

  25. H.-C. Kuan, C.-C.M. Ma, W.-P. Chang, S.-M. Yuen, H.-H. Wu, and T.-M. Lee, Compos. Sci. Technol., 65, 1703 (2005).

    CAS  Google Scholar 

  26. C.-X Liu and J.-W. Choi, Nanomaterials, 2, 329 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. I. Kang, M. J. Schulz, J. H. Kim, V. Shanov, and D. Shi, Smart Mater. Struct, 15, 737 (2006).

    CAS  Google Scholar 

  28. C. P. Deck and K. Vecchio, Carbon, 44, 267 (2006).

    CAS  Google Scholar 

  29. C.-X. Liu and J.-W. Choi, IEEE Trans. Nanotechnoi, 9, 590 (2010).

    Google Scholar 

  30. J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun’ko, Carbon, 44, 1624 (2006).

    CAS  Google Scholar 

  31. C. Park, Z. Ounaies, K. A Watson, R E. Crooks, J. Smith Jr, S. E. Lowther, J. W. Connell, E. J. Siochi, J. S. Harrison, and T. L. St Clair, Chem. Phys. Lett, 364, 303 (2002).

    CAS  Google Scholar 

  32. Y. K. Lee, S. H. Jang, M. S. Kim, W. N. Kim, H. G. Yoon, S. D. Park S.-T. Kim, and J. D. Lee, Macromol. Res., 18, 241 (2010).

    CAS  Google Scholar 

  33. J. H. Lee, S. M. Lee, H. J. Byeon, J. S. Hong, K S. Park and S.-H. Lee, J. Neural Eng., 11, 046014 (2014).

    PubMed  Google Scholar 

  34. M. Nour, K Berean, S. Balendhran, J.Z. Ou, J. Du Plessis, C. McSweeney, M. Bhaskaran, S. Sriram, and K Kalantar-zadeh, Int J. Hydrogen Energy, 38, 10494 (2013).

    CAS  Google Scholar 

  35. R. Zhang, J. Ding, C. Liu, and E.-H. Yang, ACS Appl. Ener. Mater, 1, 2048 (2018).

    CAS  Google Scholar 

  36. Y.-T. Lai, Y.-M. Chen, and Y.-J. J. Yang, J. Microelectromech. Sys., 21, 217 (2012).

    CAS  Google Scholar 

  37. W. Xu and M. G. Men, J. Polym. Sci. PartB: Polym. Phys., 51, 1505 (2013).

    CAS  Google Scholar 

  38. B. J. Cha, J. M. Yang, and W. Hwang, Macromol. Res., 14, 579 (2006).

    CAS  Google Scholar 

  39. C.-X. Liu and J.-W. Choi, J. Micromech. Microeng., 19, 085019 (2009).

    Google Scholar 

  40. X. Niu, S. Peng, L. Liu, W. Wen, and P. Sheng, Adv. Mater, 19, 2682 (2007).

    CAS  Google Scholar 

  41. J. Lu, M. Lu, A. Bermak, and Y.-K Lee, in 2007 7th IEEE Conference on Nanotechnology (IEEE NANO), IEEE2007, pp 1240–1243.

    Google Scholar 

  42. H. Cong and T. Pan, Adv. Funct. Mater, 18, 1912 (2008).

    CAS  Google Scholar 

  43. W. Khan, R. Sharma, and P. Saini, in Carbon Nanotubes Current Progress of their Polymer Composites, INTECH2016, pp 1–46.

    Google Scholar 

  44. W. Xu, M. Kranz, S. Kim, and M. Allen, J. Micromech. Microeng., 20, 104003 (2010).

    Google Scholar 

  45. P. J. Sousa, L. Silva, L. Goncalves, and G. Minas, in 201S IEEE 4th Portuguese Meeting on Bioengineering (ENBENG), IEEE2015, pp 1–4.

    Google Scholar 

  46. S. Pyo, J.-I. Lee, M.-O. Kim, T. Chung, Y Oh, S.-C. Lim, J. Park, and J. Kim, J. Micromech. Microeng., 24, 075012 (2014).

    Google Scholar 

  47. H. Ogihara, H. Kibayashi, and T. Saji, ACS Appl. Mater. Interfaces, 4, 4891 (2012).

    CAS  PubMed  Google Scholar 

  48. Y Ando, X Zhao, H. Shimoyama, G. Sakai, and K Kaneto, Int J. Inorganic Mater, 1, 77 (1999).

    CAS  Google Scholar 

  49. K. Aran, L. A. Sasso, N. Kamdar, and J. D. Zahn, Lab on a Chip, 10, 548 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. M. Imbabyand K. Gottschalk, J. Micromech. Microeng., 23, 055012 (2013).

    Google Scholar 

  51. Y. Maeda, S.-I. Kimura, Y. Hirashima, M. Kanda, Y. Lian, T. Wakahara, T. Akasaka, T. Hasegawa, H. Tokumoto, and T. Shimizu, J. Phys. Chem. B, 108, 18395 (2004).

    CAS  Google Scholar 

  52. B. Kim, Y.-H. Lee, J.-H. Ryu, and K-D. Suh, Colloids Surfaces A: Physico-chem. Eng. Aspects, 273, 161 (2006).

    CAS  Google Scholar 

  53. L. Sudak, J. Appl. Phys, 94, 7281 (2003).

    CAS  Google Scholar 

  54. A. Berni, M. Mennig, and H. Schmidt, in Sol-Gel Technol. Glass Producers and Users, M.A Aegerter and M. Mennig, Eds., Springer US, Boston, MA, 2004, pp 89–92.

  55. N. Yogeswaran, S. Tinku, S. Khan, L. Lorenzelli, V. Vinciguerra, and R. Dahiya, in 201S 11th Conference on Ph. D. Research in Microelectronics and Electronics (PRIME), IEEE2015, pp 326–329.

    Google Scholar 

  56. C. Lee, L. Jug, and E. Meng, Appl Phys. Lett., 102, 183511 (2013).

    Google Scholar 

  57. P. Sheng, E. Sichel, and J. Gittleman, Phys. Rev. Lett, 40, 1197 (1978).

    CAS  Google Scholar 

  58. K. Wang, A Carbon Nanotube Microelectrode Array for Neural Stimulation, Stanford University, 2006.

    Google Scholar 

  59. K. Wang H. A. Fishman, H. Dai, and J. S. Harris, Nano Lett, 6, 2043 (2006).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Nasiri.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslnejad, S., Nasiri, M., Abbasi, F. et al. Preparation of MWCNT/PDMS Conductive Micro-Patterned Nanocomposites. Macromol. Res. 28, 733–738 (2020). https://doi.org/10.1007/s13233-020-8095-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8095-z

Keywords

Navigation