Skip to main content
Log in

Efficient Cathode Interfacial Materials Based on Triazine/Phosphine Oxide for Conventional and Inverted Organic Solar Cells

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Cathode interfacial layers (CIL) have been applied in organic solar cells (OSCs) for the enhancement of photovoltaic characteristics. Most of them are employed in either conventional organic solar cells (COSCs) or inverted organic solar cells (IOSCs) only. Herein, we have designed and synthesized two cathode interfacial materials, namely, 3-(4,6-bis(4-bromophenoxy)-1,3,5-triazin-2-yl)-2,6-difluorophenyl)diphenylphosphine oxide (Br-PO-TAZ) and 4,4′-((6-(3-(diphenylphosphoryl)-2,4-difluorophenyl)-1,3,5-triazine-2,4-diyl)bis(oxy))dibenzonitrile (CN-PO-TAZ), and utilized them as CILs for both COSCs and IOSCs. The incorporation of our new CIL layers significantly enhanced the photovoltaic performance compared to COSCs and IOSCs without the CILs. The CN-PO-TAZ exhibited a power conversion efficiency (PCE) of 8.19% for COSCs and 8.33% for IOSCs, whereas Br-PO-TAZ yielded a PCE of 8.15% for COSCs and 8.23% for IOSCs, respectively. The improved performance was attributed to the multiple favorable factors: significantly reducing leakage current, decreasing series resistance, suppressing recombination, efficient charge transport and collection. Moreover, the CIL layers helped for sustaining device stability because they served as an internal shield against humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Günes, H. Neugebauer, and N. S. Sariciftci, Chem. Rev., 107, 1324 (2007).

    PubMed  Google Scholar 

  2. G. Li, R. Zhu, and Y. Yang, Nat. Photonics, 6, 153 (2012).

    CAS  Google Scholar 

  3. W. Chen, G. Huang, X. Li, H. Wang, Y. Li, H. Jiang, N. Zheng, and R. Yang, ACS Appl. Mater. Interfaces, 10, 42747 (2018).

    CAS  PubMed  Google Scholar 

  4. L. Lu, T. Zheng, Q. Wu, A. M. Schneider, D. Zhao, and L. Yu, Chem. Rev., 115, 12666 (2015).

    CAS  PubMed  Google Scholar 

  5. N. K. Elumalai and A. Uddin, Energy Environ. Sci., 9, 391 (2016).

    CAS  Google Scholar 

  6. K. Gao, S. B. Jo, X. Shi, L. Nian, M. Zhang, Y. Kan, F. Lin, B. Kan, B. Xu, Q. Rong, L. Shui, F. Liu, X. Peng, G. Zhou, Y. Cao, and A. K. Y. Jen, Adv. Mater., 31, 1807842 (2019).

    Google Scholar 

  7. U. K. Aryal, S. S. Reddy, K. Kranthiraja, J. Kim, W. Cho, M. Song, and S.-H. Jin, ACS Appl. Energy Mater., 2, 4159 (2019).

    CAS  Google Scholar 

  8. Y. Lin, F. Zhao, Y. Wu, K. Chen, Y. Xia, G. Li, S. K. K. Prasad, J. Zhu, L. Huo, H. Bin, Z.-G. Zhang, X. Guo, M. Zhang, Y. Sun, F. Gao, Z. Wei, W. Ma, C. Wang, J. Hodgkiss, Z. Bo, O. Inganas, Y. Li, and X. Zhan, Adv. Mater., 29, 1604155 (2017).

    Google Scholar 

  9. X. Lin, Y. Yang, L. Nian, H. Su, J. Ou, Z. Yuan, F. Xie, W. Hong, D. Yu, M. Zhang, Y. Ma, and X. Chen, Nano Energy, 26, 216 (2016).

    CAS  Google Scholar 

  10. Z. Fei, F. D. Eisner, X. Jiao, M. Azzouzi, J. A. Rohr, Y. Han, M. Shahid, A. S. R. Chesman, C. D. Easton, C. R. McNeill, T. D. Anthopoulos, J. Nelson, and M. Heeney, Adv. Mater., 30, 1705209 (2018).

    Google Scholar 

  11. X. Xu, T. Yu, Z. Bi, W. Ma, Y. Li, and Q. Peng, Adv. Mater., 30, 1703973 (2018).

    Google Scholar 

  12. Z. Chen, Z. Hu, Z. Wu, X. Liu, Y. Jin, M. Xiao, F. Huang, and Y. Cao, J. Mater. Chem. A, 5, 19447 (2017).

    CAS  Google Scholar 

  13. P. Fu, X. Guo, B. Zhang, T. Chen, W. Qin, Y. Ye, J. Hou, J. Zhang, and C. Li, J. Mater. Chem. A, 4, 16824 (2016).

    CAS  Google Scholar 

  14. U. K. Aryal, V. M. Arivunithi, S. S. Reddy, J. Kim, Y.-S. Gal, and S.-H. Jin, Org. Electron., 63, 222 (2018).

    CAS  Google Scholar 

  15. W. Chen, W. Jiao, D. Li, X. Sun, X. Guo, M. Lei, Q. Wang, and Y. Li, Chem. Mater., 28, 1227 (2016).

    CAS  Google Scholar 

  16. Q. Yin, K. Zhang, L. Zhang, J. Jia, X. Zhang, S. Pang, Q.-H. Xu, C. Duan, F. Huang, and Y. Cao, J. Mater. Chem. A, 7, 12426 (2019).

    CAS  Google Scholar 

  17. S. Trost, K. Zilberberg, A. Behrendt, and T. Riedl, J. Mater. Chem., 22, 16224 (2012).

    CAS  Google Scholar 

  18. L. Ai, X. Ouyang, Z. Liu, R. Peng, D. Mi, M.-A. Kakimoto, and Z. Ge, Prog. Photovolt. Res. Appl., 24, 1044 (2016).

    CAS  Google Scholar 

  19. Y.-L. Li, Y.-S. Cheng, P.-N. Yeh, S.-H. Liao, and S.-A. Chen, Adv. Funct. Mater., 24, 6811 (2014).

    CAS  Google Scholar 

  20. M. Vasilopoulou, A. M. Douvas, L. C. Palilis, S. Kennou, and P. Argitis, J. Am. Chem. Soc., 137, 6844 (2015).

    CAS  PubMed  Google Scholar 

  21. W. Li, Z. Liu, R. Yang, Q. Guan, W. Jiang, A. Islam, T. Lei, L. Hong, R. Peng, and Z. Ge, ACS Appl. Mater. Interfaces, 9, 27083 (2017).

    CAS  PubMed  Google Scholar 

  22. J. You, C.-C. Chen, L. Dou, S. Murase, H.-S. Duan, S. A. Hawks, T. Xu, H. J. Son, L. Yu, G. Li, and Y. Yang, Adv. Mater., 24, 5267 (2012).

    CAS  PubMed  Google Scholar 

  23. W. Zhang, Y. Wu, Q. Bao, F. Gao, and J. Fang, Adv. Energy Mater., 4, 1400359 (2014).

    Google Scholar 

  24. W. Yang, L. Ye, F. Yao, C. Jin, H. Ade, and H. Chen, Nano Res., 12, 777 (2019).

    CAS  Google Scholar 

  25. Q. Zhang, R. Peng, C. Zhang, D. Chen, Z. Lin, J. Chang, J. Zhang, and Y. Hao, Polymers, 10, 127 (2018).

    PubMed Central  Google Scholar 

  26. J. Jo, J.-R. Pouliot, D. Wynands, S. D. Collins, J. Y. Kim, T. L. Nguyen, H. Y. Woo, Y. Sun, M. Leclerc, and A. J. Heeger, Adv. Mater., 25, 4783 (2013).

    CAS  PubMed  Google Scholar 

  27. A. K. K. Kyaw, D. H. Wang, V. Gupta, J. Zhang, S. Chand, G. C. Bazan, and A. J. Heeger, Adv. Mater., 25, 2397 (2013).

    CAS  PubMed  Google Scholar 

  28. S. J. Liu, K. Zhang, J. M. Lu, Z. Zhang, H. L. Yip, F. Huang, and Y. Cao, J. Am. Chem. Soc., 135, 15326 (2013).

    CAS  PubMed  Google Scholar 

  29. B. Yang, S. Zhang, S. Li, H. Yao, W. Li, and J. Hou, Adv. Mater., 31, 1804657 (2019).

    Google Scholar 

  30. H.-H. Liao, L.-M. Chen, Z. Xu, G. Li, and Y. Yang, Appl. Phys. Lett., 92, 173303 (2008).

    Google Scholar 

  31. W. Xu, C. Yan, Z. Kan, Y. Wang, W.-Y. Lai, and W. Huang, ACS Appl. Mater. Interfaces, 8, 14293 (2016).

    CAS  PubMed  Google Scholar 

  32. C. K. Song, A. C. White, L. Zeng, B. J. Leever, M. D. Clark, J. D. Emery, S. J. Lou, A. Timalsina, L. X. Chen, M. J. Bedzyk, and T. J. Marks, ACS Appl. Mater. Interfaces, 5, 9224 (2013).

    CAS  PubMed  Google Scholar 

  33. J.-H. Lee, B. H. Lee, S. Y. Jeong, S. B. Park, G. Kim, S. H. Lee, and K. Lee, Adv. Energy Mater., 5, 1501292 (2015).

    Google Scholar 

  34. W. Lee, S. Jeong, C. Lee, G. Han, C. Cho, J. Y. Lee, and B. J. Kim, Adv. Energy Mater., 7, 9 (2017).

    Google Scholar 

  35. G. Xu, L. Gao, H. Xu, L. Huang, Y. Xie, X. Cheng, Y. Li, L. Chen, and Y. Chen, J. Mater. Chem. A, 5, 13807 (2017).

    CAS  Google Scholar 

  36. W.-J. Chen, Y.-C. Cheng, D.-W. Kuo, C.-T. Chen, B.-T. Liu, R.-J. Jeng, and R.-H. Lee, RSC Adv., 8, 31478 (2018).

    CAS  Google Scholar 

  37. Y.-A. Su, W.-C. Lin, H.-J. Wang, W.-H. Lee, R.-H. Lee, S. A. Dai, C.-F. Hsieh, and R.-J. Jeng, RSC Adv., 5, 25192 (2015).

    CAS  Google Scholar 

  38. N. Chakravarthi, U. K. Aryal, K. Gunasekar, H.-Y. Park, Y.-S. Gal, Y.-R. Cho, S. I. Yoo, M. Song, and S.-H. Jin, ACS Appl. Mater. Interfaces, 9, 24753 (2017).

    CAS  PubMed  Google Scholar 

  39. N. Chakravarthi, K. Gunasekar, W. Cho, D. X. Long, Y. H. Kim, C. E. Song, A. Facchetti, M. Song, Y.-Y. Noh, and S.-H. Jin, Energy Environ. Sci., 9, 2595 (2016).

    CAS  Google Scholar 

  40. W. Yu, L. Huang, D. Yang, P. Fu, L. Zhou, J. Zhang, and C. Li, J. Mater. Chem. A., 3, 10660 (2015).

    CAS  Google Scholar 

  41. U. K. Aryal, N. Chakravarthi, H.-Y. Park, H. Bae, S.-H. Jin, and Y.-S. Gal, Org. Electron., 53, 265 (2018).

    CAS  Google Scholar 

  42. H. I. Kim, T. T. Bui, G.-W. Kim, G. Kang, W. S. Shin, and T. Park, ACS Appl. Mater. Interfaces, 6, 15875 (2014).

    CAS  PubMed  Google Scholar 

  43. J. S. Lee, M. J. Cha, Y. J. Park, J. Y. Kim, J. H. Seo, and B. Walker, RSC Adv., 6, 36561 (2016).

    CAS  Google Scholar 

  44. P. N. Murgatroyd, J. Phys. D: Appl. Phys., 3, 151 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youngu Lee, Bong Soo Kim, Hyung Woo Lee or Sung-Ho Jin.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgment: This work was supported by the National Research Foundation (NRF-2018R1A5A1025594) by the Ministry of Science, ICT of Korea.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aryal, U.K., Reddy, S.S., Choi, J. et al. Efficient Cathode Interfacial Materials Based on Triazine/Phosphine Oxide for Conventional and Inverted Organic Solar Cells. Macromol. Res. 28, 727–732 (2020). https://doi.org/10.1007/s13233-020-8086-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8086-0

Keywords

Navigation