Skip to main content
Log in

Apyrase with anti-platelet aggregation activity from the nymph of the camel tick Hyalomma dromedarii

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Apyrase is one of the essential platelet aggregation inhibitors in hematophagous arthropods due to its ability to hydrolyze ATP and ADP molecules. Here, an apyrase (TNapyrase) with antiplatelet aggregation activity was purified and characterized from the nymphs of the camel tick Hyalomma dromedarii through anion exchange and gel filtration columns. The homogeneity of TNapyrase was confirmed by native-PAGE, SDS-PAGE as well as with isoelectric focusing. Purified TNapyrase had a molecular mass of 25 kDa and a monomer structure. TNapyrase hydrolyzed various nucleotides in the order of ATP > PPi > ADP > UDP > 6GP. The Km value was 1.25 mM ATP and its optimum activity reached at pH 8.4. The influence of various ions on TNapyrase activity showed that FeCl2, FeCl3 and ZnCl2 are activators of TNapyrase. EDTA inhibited TNapyrase activity competitively with a single binding site on the molecule and Ki value of 2 mM. Finally, TNapyrase caused 70% inhibition of ADP-stimulated platelets aggregation and is a possible target for antibodies in future tick vaccine studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abbreviations

ADP:

Adenosine diphosphates

ATP:

Adenosine triphosphates

6GP:

6-Phosphogluconate

PPi:

Inorganic phosphate

PPP:

Platelet poor plasma

PRP:

Platelet rich plasma

TNapyrase:

Tick nymph apyrase

References

  • Abdullah H, El-Shanawany E, Abdel-Shafy S, Abou-Zeina H, Abdel-Rahman E (2018) Molecular and immunological characterization of Hyalomma dromedarii and Hyalomma excavatum (Acari: Ixodidae) vectors of Q fever in camels. Vet World 11:1109–1119

    CAS  PubMed  Google Scholar 

  • Bednar B, Condra C, Gould RJ, Connolly TM (1995) Platelet aggregation monitored in a 96 well microplate reader is useful for evaluation of platelet agonists and antagonists. Thromb Res 77:453–463

    CAS  PubMed  Google Scholar 

  • Brackney DE, Armstrong PM (2016) Transmission and evolution of tick-borne viruses. Curr Opin Virol 21:67–74

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Caimano MJ, Drecktrah D, Kung F, Samuels DS (2016) Interaction of the Lyme disease spirochete with its tick vector. Cell Microbiol 18:919–927

    CAS  PubMed  Google Scholar 

  • Champagne DE, Smartt CT, Ribeiro JMC, James AA (1995) The salivary gland-spesific apyrase of the mosquito Aedes aegyptiis a member of the 5%-nucleotidase family. Proc Natl Acad Sci USA 92:694–698

    CAS  PubMed  Google Scholar 

  • Cheeseman MT (1998) Characterization of apyrase activity from the salivary glands of the cat flea Ctenocephalides felis. Insect Biochem Mol Biol 28:1025–1030

    CAS  PubMed  Google Scholar 

  • Chitimia-Dobler L, Schaper S, Rieß R, Bitterwolf K, Frangoulidis D, Bestehorn M, Springer A, Oehme R, Drehmann M, Lindau A, Mackenstedt U, Strube C, Dobler G (2019) Imported Hyalomma ticks in Germany in 2018. Parasites Vectors 12:134

    PubMed  Google Scholar 

  • Cote YP, Picher M, St-Jean P, Bliveau R, Potier M, Beaudoin AR (1991) Identification and localization of ATP-diphosphohydrolase (apyrase) in bovine aorta: relevance to vascular tone and platelet aggregation. Biochim Biophys Acta 1078:187–191

    CAS  PubMed  Google Scholar 

  • Darwish DA, Masoud HM, Ibrahim MA (2015) Apyrase from embryo of the camel tick Hyalomma dromedarii. RJPBCS 6(1):1687–1695

    Google Scholar 

  • De la Fuente J, Estrada-Pena A, Venzal JM, Kocan KM, Sonenshine DE (2008) Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front Biosci 13:6938–6946

    PubMed  Google Scholar 

  • Dutta S, Gogoi D, Mukherjee AK (2015) Anticoagulant mechanism and platelet deaggregation property of a non-cytotoxic, acidic phospholipase A2 purified from Indian cobra (Naja naja) venom: inhibition of anticoagulant activity by low molecular weight heparin. Biochimie 110:93–106

    CAS  PubMed  Google Scholar 

  • Frassetto SS, Dias RD, Sarkis JJF (1993) Characterization of an ATP diphosphohydrolase activity (apyrase, EC 3.6.1.5) in rat blood platelets. Mol Cell Biochem 129:47–55

    CAS  PubMed  Google Scholar 

  • Gao XD, Kaigorodov V, Jigami Y (1999) YND1, a homologue of GDA1, encodes membrane-bound apyrase required for Golgi N- and O-glycosylation in Saccharomyces cerevisiae. J Biol Chem 274:21450–21456

    CAS  PubMed  Google Scholar 

  • Hansford KM, Carter D, Gillingham EL, Hernandez-Triana LM, Chamberlain J, Cull B, McGinley L, Phipps LP, Medlock JM (2019) Hyalomma rufipes on an untraveled horse: Is this the first evidence of Hyalomma nymphs successfully moulting in the United Kingdom? Ticks Tick-Borne Dis 10:704–708

    PubMed  Google Scholar 

  • Hughes AL (2013) Evolution of the salivary apyrases of blood-feeding arthropods. Gene 527:123–130

    CAS  PubMed  Google Scholar 

  • Ibrahim MA, Masoud HMM (2018) Thrombin inhibitor from the salivary gland of the camel tick Hyalomma dromedarii. Exp Appl Acarol 74:85–97

    CAS  PubMed  Google Scholar 

  • Ibrahim MA, Ghazy AM, Maharem T, Khalil M (2001a) Factor Xa (FXa) inhibitor from the nymphs of the camel tick Hyalomma dromedarii. Comp Biochem Physiol B 130(4):501–512

    CAS  PubMed  Google Scholar 

  • Ibrahim MA, Ghazy AM, Maharem T, Khalil M (2001b) Isolation and properties of two forms of thrombin inhibitor from the nymphs of the camel tick Hyalomma dromedarii (Acari: Ixodidae). Exp Appl Acarol 25:675–698

    CAS  PubMed  Google Scholar 

  • Ibrahim MA, Ghazy AM, Masoud HMM (2015) Catalase from larvae of the camel tick Hyalomma dromedarii. Biochem Biophys Reports 4:411–416

    Google Scholar 

  • Ibrahim MA, Mohamed MM, Ghazy AM, El-Mogy M, Masoud HMM (2016) Purification and characterization of two glutathione peroxidases from embryo of the camel tick Hyalomma dromedarii. Russian J Bioorg Chem 42(3):272–281

    CAS  Google Scholar 

  • Jin J, Kunapuli SP (1998) Coactivation of two different G protein-coupled receptors is essential for ADP-induced platelet aggregation. Proce Nat Acad Sci USA 95(14):8070–8074

    CAS  Google Scholar 

  • Jongejan F, Uilenberg G (2004) The global importance of ticks. Parasitology 129:S3–14

    PubMed  Google Scholar 

  • Kazimírová M, Stibrániová I (2013) Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Front Cell Infect Microbiol 3:43

    PubMed  Google Scholar 

  • Kettlun AM, Urra R, Leyton M, Valenzuela MA, Mancilla M, Traverso-Cori A (1992) Purification and characterization of two isoapyrases from Solanum tuberosum var Ultimus. Phytochemistry 31(11):3691–3696

    CAS  Google Scholar 

  • Kettlun AM, Alvarez A, Quintar R, Valenzuela MA, Collados L, Aranda E, Banda A, Chayet L, Chiong M, Mancilla M, Traverso-Cori A (1994) Human placental ATP-diphosphohydrolase biochemical characterization, regulation and function. Int J Biochem 26:437–448

    CAS  PubMed  Google Scholar 

  • Knowles AF (2011) The GDA1_CD39 superfamily: NTDPases with diverse functions. Purinergic Signal 7:21–45

    CAS  PubMed  Google Scholar 

  • Kocan KM, Blouin EF, Barbet AF (2009) Anaplasmosis control: Past, present, and future. Ann N Y Acad Sci 916:501–509

    Google Scholar 

  • Komoszynski MA (1993) Subcellular and surface localization of the membrane-bound apyrase (ATP-diphosphohydrolase EC 3.6.1.5) from wheat seedlings. Phytochemsitry 34:941–948

    CAS  Google Scholar 

  • Komoszynski MA, Wojtczak A (1996) Apyrases (ATP diphosphohydrolases, EC 3.6.1.5): function and relationship to ATPases. Biochim Biophys Acta 1310:233–241

    PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. Nature 227:680–685

    CAS  PubMed  Google Scholar 

  • Leal DB, Streher CA, Neu TN, Bittencourt FP, Leal CA, da Silva JE, Morsch VM, Schetinger MR (2005) Characterization of NTPDase (NTPDase1; ecto-apyras; ecto-diphosphohydrolase; CD39; EC 3.6.1.) activity in human lymphocytes. Biochim Biophys Act 1721:9–15

    CAS  Google Scholar 

  • Mans BJ, Gaspa ARMD, Louw AI, Neitz AWH (1998) Purification and characterization of apyrase from the tick, Ornithodoros savignyi. Comp Biochem Physiol B 120:617–624

    CAS  PubMed  Google Scholar 

  • Mant MJ, Parker KR (1981) Two platelet aggregation inhibitors in tsetse (Glossina) saliva with studies of roles of thrombin and citrate in vitro platelet aggregation. Br J Haematol 48:601–608

    CAS  PubMed  Google Scholar 

  • Mita M, Yoshikuni M, Nagahama Y (1998) Ecto-ATP diphosphohydrolase (apyrase) in ovarian follicle cells of starfish Asterina pectinifera. Comp Biochem Physiol B 119:577–583

    Google Scholar 

  • Mulero JJ, Yeung G, Nelken ST, Ford JE (1999) CD39-L4 is a secreted human apyrase, specific for the hydrolysis of nucleoside diphosphates. J Biol Chem 274:20064–20067

    CAS  PubMed  Google Scholar 

  • O'Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    CAS  PubMed  Google Scholar 

  • Okuhata R, Takishima T, Nishimura N, Ueda S, Tsuchiya T, Kanzawa N (2011) Purification and biochemical characterization of a novel ecto-apyrase, mp67, from Mimosa pudica. Plant Physiol 157:464–475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parola P, Paddock CD, Socolovschi C, Labruna MB, Mediannikov O, Kernif T et al (2013) Update on tick-borne rickettsioses around the world: a geographic approach. Clin Microbiol Rev 26:657–702

    PubMed  PubMed Central  Google Scholar 

  • Pearson JD, Carleton JS, Gordon JL (1980) Metabolism of adenine nucleotides by ectoenzymes of vascular endothelial and smoothmuscle cells in culture. Biochem J 190:421–429

    CAS  PubMed  Google Scholar 

  • Ribeiro JMC, Modi GB, Tesh RB (1989) Salivary apyrase activity of some old world phlebotomine sand flies. Insect Biochem 19:409–412

    CAS  Google Scholar 

  • Ribeiro JMC, Vaughan JA, Azad AF (1990) Characterization of the salivary apyrase activity of three rodent flea species. Comp Biochem Physiol B 95:215–219

    CAS  PubMed  Google Scholar 

  • Sarkis JJF, Guimares JA, Ribeiro JMC (1986) Salivary apyrase of Rhodnius prolixus: kinetics and purification. Biochem J 233:885–891

    CAS  PubMed  Google Scholar 

  • Smith I (1969) Acrylamide gel disc electrophoresis. In: Smith I (ed) Electrophoretic techniques. Academic Press, New York, pp 365–515

    Google Scholar 

  • Smith TM, Hicks-Berger CA, Kim S, Kirley TL (2002) Cloning, expression and characterization of a soluble calcium-activated nucleotidase, a human enzyme belonging to a new family of extracellular nucleotidases. Arch Biochem Biophys 406:105–115

    CAS  PubMed  Google Scholar 

  • Stutzer C, Mans BJ, Gaspar ARM, Neitz AWH, Maritz-Olivier C (2009) Ornithodoros savignyi: Soft tick apyrase belongs to the 50-nucleotidase family. Exp Parasites 122:318–327

    CAS  Google Scholar 

  • Ubuka T, Masuoka N, Yoshida S, Ishino K (1987) Determination of isoelectric point value of 3-Mercaptopyruvate sulfurtransferase by isoelectric focusing using ribonuclease A-glutathione mixed disulfides as standards. Anal Biochem 167:284–289

    CAS  PubMed  Google Scholar 

  • Valenzuela JG, Chuffe OM, Ribeiro JMC (1996) Apyrase and anti-platelet activities from the salivary glands of the bed bug Cimex lectularius. Insect Biochem Mol Biol 21:557–562

    Google Scholar 

  • Valenzuela JG, Charlab R, Galperin MY, Ribeiro JM (1998) Purification, cloning, and expression of an apyrase from the bed bug Cimex lectularius. A new type of nucleotide-binding enzyme. J Biol Chem 273:30583–30590

    CAS  PubMed  Google Scholar 

  • Vara F, Serrano R (1981) Purification and characterization of a membrane-bound ATP diphosphohydrolase from Cicer arietinum (chick-pea) roots. Biochem J 197:637–643

    CAS  PubMed  Google Scholar 

  • Weber K, Osborn M (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 244:4406–4412

    CAS  PubMed  Google Scholar 

  • Weyrich AS, Zimmerman GA (2004) Platelets: signalling cells in the immune continuum. Trends Immunol 25:489–495

    CAS  PubMed  Google Scholar 

  • Yagi K, Kato N, Shinbo M, Shimba LS, Miura Y (1992) Purification and characterization of adenosine diphosphatase from human umbilical vessels. Chem Pharm Bull 40:2143–2146

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The National Research Centre, Egypt is greatly appreciated for funding this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan M. M. Masoud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masoud, H.M.M., Helmy, M.S., Darwish, D.A. et al. Apyrase with anti-platelet aggregation activity from the nymph of the camel tick Hyalomma dromedarii. Exp Appl Acarol 80, 349–361 (2020). https://doi.org/10.1007/s10493-020-00471-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-020-00471-9

Keywords

Navigation