Skip to main content
Log in

A Novel Intelligent ELM-BBO Technique for Predicting Distance of Mine Blasting-Induced Flyrock

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Blasting is an economical technique for rock breaking in hard rock excavation. One of its complex undesired environmental effects is flyrock, which may result in human injuries, fatalities and property damage. Because previously developed techniques for predicting flyrock are having less accuracy, this paper develops a new hybrid intelligent system of extreme learning machine (ELM) optimized by biogeography-based optimization (BBO) for prediction of flyrock distance resulting from blasting in a mine. In the BBO-ELM system, the role of BBO is to optimize the weights and biases of ELM. For comparison purposes, another hybrid model, i.e., particle swarm optimization (PSO)-ELM and a pre-developed ELM model were also applied and proposed. To do so, 262 datasets including burden to spacing ratio, hole diameter, powder factor, stemming, maximum charge per delay and hole depth as input variables and flyrock distance as system output were considered and used. Many models with different combinations of training and testing datasets have been constructed to identify the best predictive model in estimating flyrock. The results indicate capability of the newly developed BBO-ELM model for predicting flyrock distance. The coefficient of determination, coefficient of persistence and root mean square error values of (0.93, 0.93 and 21.51), (0.94, 0.95 and 18.84) and (0.79, 0.85 and 32.29) were obtained for testing datasets of PSO-ELM, BBO-ELM and ELM model, respectively, which reveal that the BBO-ELM is a powerful model for predicting flyrock induced by blasting. The developed BBO-ELM model can be introduced as a new, capable and applicable model for solving engineering problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Adhikari, G. R. (1999). Studies on flyrock at limestone quarries. Rock Mechanics and Rock Engineering, 32(4), 291–301.

    Google Scholar 

  • Akusok, A., Björk, K.-M., Miche, Y., & Lendasse, A. (2015). High-performance extreme learning machines: a complete toolbox for big data applications. IEEE Access, 3, 1011–1025.

    Google Scholar 

  • Amini, H., Gholami, R., Monjezi, M., & Torabi, S. (2012). Evaluation of flyrock phenomenon due to blasting operation by support vector machine. Neural Computing and Applications, 21(8), 2077–2085.

    Google Scholar 

  • Apostolopoulou, M., Armaghani, D. J., Bakolas, A., Douvika, M. G., Moropoulou, A., & Asteris, P. G. (2019). Compressive strength of natural hydraulic lime mortars using soft computing techniques. Procedia Structural Integrity, 17, 914–923.

    Google Scholar 

  • Armaghani, D. J., Mohamad, E., & Hajihassani, M. (2016a). Evaluation and prediction of flyrock resulting from blasting operations using empirical and computational methods. Engineering with Computers, 32, 109–121.

    Google Scholar 

  • Armaghani, D. J., Hajihassani, M., Mohamad, E. T., Marto, A., & Noorani, S. A. (2014). Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization. Arabian Journal of Geosciences, 7(12), 5383–5396.

    Google Scholar 

  • Armaghani, D. J., Hatzigeorgiou, G. D., Karamani, C., Skentou, A., Zoumpoulaki, I., & Asteris, P. G. (2019). Soft computing-based techniques for concrete beams shear strength. Procedia Structural Integrity, 17, 924–933.

    Google Scholar 

  • Armaghani, D. J., Mahdiyar, A., Hasanipanah, M., Faradonbeh, R. S., Khandelwal, M., & Amnieh, H. B. (2016b). Risk assessment and prediction of flyrock distance by combined multiple regression analysis and monte carlo simulation of quarry blasting. Rock Mechanics and Rock Engineering, 49(9), 1–11. https://doi.org/10.1007/s00603-016-1015-z.

    Article  Google Scholar 

  • Armaghani, D. J., Mohamad, E. T., Narayanasamy, M. S., Narita, N., & Yagiz, S. (2017). Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition. Tunnelling and Underground Space Technology, 63, 29–43. https://doi.org/10.1016/j.tust.2016.12.009.

    Article  Google Scholar 

  • Asteris, P. G., Armaghani, D. J., Hatzigeorgiou, G. D., Karayannis, C. G., & Pilakoutas, K. (2019a). Predicting the shear strength of reinforced concrete beams using artificial neural networks. Computers and Concrete, 24(5), 469–488.

    Google Scholar 

  • Asteris, P. G., & Mokos, V. G. (2019). Concrete compressive strength using artificial neural networks. Neural Computing and Applications. https://doi.org/10.1007/s00521-019-04663-2.

    Article  Google Scholar 

  • Asteris, P. G., Moropoulou, A., Skentou, A. D., Apostolopoulou, M., Mohebkhah, A., Cavaleri, L., et al. (2019b). Stochastic vulnerability assessment of masonry structures: Concepts modeling and restoration aspects. Applied Sciences, 9(2), 243.

    Google Scholar 

  • Asteris, P. G., & Nikoo, M. (2019). Artificial bee colony-based neural network for the prediction of the fundamental period of infilled frame structures. Neural Computing and Applications. https://doi.org/10.1007/s00521-018-03965-1.

    Article  Google Scholar 

  • Bajpayee, T., Verakis, H., & Lobb, T. (2004). An analysis and prevention of flyrock accidents in surface blasting operations. Proceedings of the Annual Conference on Explosives and Blasting Technique, 2, 401–410.

    Google Scholar 

  • Bartlett, P. L. (1998). The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network. IEEE Transactions on Information Theory, 44(2), 525–536.

    Google Scholar 

  • Berta, G. (1990). Explosives: An engineering tool. Italesplosivi.

  • Bhandari, S. (2011). Information management for improved blasting operations and environmental control (pp. 10–13). Xiamen: Third Asia-Pacific Symposium on Blasting Techniques.

    Google Scholar 

  • Bhandari, S. (1997). Engineering rock blasting operations. A. A. Balkema., 388, 388.

    Google Scholar 

  • Bui, D. T., Ngo, P.-T. T., Pham, T. D., Jaafari, A., Minh, N. Q., Hoa, P. V., et al. (2019). A novel hybrid approach based on a swarm intelligence optimized extreme learning machine for flash flood susceptibility mapping. CATENA, 179, 184–196.

    Google Scholar 

  • Chen, H., Asteris, P. G., Jahed Armaghani, D., Gordan, B., & Pham, B. T. (2019). Assessing dynamic conditions of the retaining wall: Developing two hybrid intelligent models. Applied Sciences, 9(6), 1042.

    Google Scholar 

  • Faradonbeh, R. S., Armaghani, D. J., & Monjezi, M. (2016a). Development of a new model for predicting flyrock distance in quarry blasting: a genetic programming technique. Bulletin of Engineering Geology and the Environment, 75(3), 993–1006.

    Google Scholar 

  • Faradonbeh, R. S., Armaghani, D. J., Monjezi, M., & Mohamad, E. T. (2016b). Genetic programming and gene expression programming for flyrock assessment due to mine blasting. International Journal of Rock Mechanics and Mining Sciences, 88, 254–264.

    Google Scholar 

  • Fletcher, L. R., & D’Andrea, D. V. (1986). Control of flyrock in blasting. In Proceedings of 12th conference on explosives and blasting technique, Atlanta, Georgia (pp. 167–177).

  • Fouladgar, N., Hasanipanah, M., & Bakhshandeh Amnieh, H. (2017). Application of cuckoo search algorithm to estimate peak particle velocity in mine blasting. Engineering with Computers. https://doi.org/10.1007/s00366-016-0463-0.

    Article  Google Scholar 

  • Ghasemi, E., Amini, H., Ataei, M., & Khalokakaei, R. (2014). Application of artificial intelligence techniques for predicting the flyrock distance caused by blasting operation. Arabian Journal of Geosciences, 7(1), 193–202.

    Google Scholar 

  • Gordan, B., Jahed Armaghani, D., Hajihassani, M., & Monjezi, M. (2016). Prediction of seismic slope stability through combination of particle swarm optimization and neural network. Engineering with Computers. https://doi.org/10.1007/s00366-015-0400-7.

    Article  Google Scholar 

  • Guo, H., Zhou, J., Koopialipoor, M., Armaghani, D. J., & Tahir, M. M. (2019). Deep neural network and whale optimization algorithm to assess flyrock induced by blasting. Engineering with Computers. https://doi.org/10.1007/s00366-019-00816-y.

    Article  Google Scholar 

  • Hajihassani, M., Jahed Armaghani, D., & Kalatehjari, R. (2017). Applications of particle swarm optimization in geotechnical engineering: A comprehensive review. Geotechnical and Geological Engineering. https://doi.org/10.1007/s10706-017-0356-z.

    Article  Google Scholar 

  • Hajihassani, M., Jahed Armaghani, D., Marto, A., & Tonnizam Mohamad, E. (2015). Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm. Bulletin of Engineering Geology and the Environment. https://doi.org/10.1007/s10064-014-0657-x.

    Article  Google Scholar 

  • Hajihassani, M, Armaghani, D., Sohaei, H., & Mohamad, E. (2014). Prediction of airblast-overpressure induced by blasting using a hybrid artificial neural network and particle swarm optimization. Applied Acoustics.

  • Hajihassani, M., Abdullah, S. S., Asteris, P. G., & Armaghani, D. J. (2019). A gene expression programming model for predicting tunnel convergence. Applied Sciences, 9(21), 4650.

    Google Scholar 

  • Han, H., Armaghani, D. J., Tarinejad, R., Zhou, J., & Tahir, M. M. (2020). Random forest and bayesian network techniques for probabilistic prediction of flyrock induced by blasting in quarry sites. Natural Resources Research. https://doi.org/10.1007/s11053-019-09611-4.

    Article  Google Scholar 

  • Harandizadeh, H., Armaghani, D. J., & Khari, M. (2019). A new development of ANFIS–GMDH optimized by PSO to predict pile bearing capacity based on experimental datasets. Engineering with Computers. https://doi.org/10.1007/s00366-019-00849-3.

    Article  Google Scholar 

  • Hasanipanah, M., Jahed Armaghani, D., Bakhshandeh Amnieh, H., Majid, M. Z. A., & Tahir, M. M. D. (2016). Application of PSO to develop a powerful equation for prediction of flyrock due to blasting. Neural Computing and Applications. https://doi.org/10.1007/s00521-016-2434-1.

    Article  Google Scholar 

  • Hasanipanah, M., & Amnieh, H. B. (2020). A fuzzy rule-based approach to address uncertainty in risk assessment and prediction of blast-induced Flyrock in a quarry. Natural Resources Research. https://doi.org/10.1007/s11053-020-09616-4.

    Article  Google Scholar 

  • Hasanipanah, M., Amnieh, H. B., Arab, H., & Zamzam, M. S. (2018). Feasibility of PSO–ANFIS model to estimate rock fragmentation produced by mine blasting. Neural Computing and Applications. https://doi.org/10.1007/s00521-016-2746-1.

    Article  Google Scholar 

  • Hasanipanah, M., Faradonbeh, R. S., Armaghani, D. J., Amnieh, H. B., & Khandelwal, M. (2017). Development of a precise model for prediction of blast-induced flyrock using regression tree technique. Environmental Earth Sciences, 76(1), 27.

    Google Scholar 

  • Hoerl, A. E., & Kennard, R. W. (1976). Ridge regression iterative estimation of the biasing parameter. Communications in Statistics-Theory and Methods, 5(1), 77–88.

    Google Scholar 

  • Huang, G.-B. (2014). An insight into extreme learning machines: random neurons, random features and kernels. Cognitive Computation, 6(3), 376–390.

    Google Scholar 

  • Huang, G.-B., Zhou, H., Ding, X., & Zhang, R. (2011). Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(2), 513–529.

    Google Scholar 

  • Huang, G., Huang, G.-B., Song, S., & You, K. (2015). Trends in extreme learning machines: A review. Neural Networks, 61, 32–48.

    Google Scholar 

  • Huang, L., Asteris, P. G., Koopialipoor, M., Armaghani, D. J., & Tahir, M. M. (2019). Invasive weed optimization technique-based ANN to the prediction of rock tensile strength. Applied Sciences, 9(24), 5372.

    Google Scholar 

  • Jahed Armaghani, D., Hajihassani, M., Monjezi, M., Mohamad, E. T., Marto, A., & Moghaddam, M. R. (2015). Application of two intelligent systems in predicting environmental impacts of quarry blasting. Arabian Journal of Geosciences, 8(11), 9647–9665. https://doi.org/10.1007/s12517-015-1908-2.

    Article  Google Scholar 

  • Jahed Armaghani, D., Hajihassani, M., Yazdani Bejarbaneh, B., Marto, A., & Tonnizam Mohamad, E. (2014). Indirect measure of shale shear strength parameters by means of rock index tests through an optimized artificial neural network. Measurement: Journal of the International Measurement Confederation, 55, 487–498. https://doi.org/10.1016/j.measurement.2014.06.001.

    Article  Google Scholar 

  • Jones, D. R. (2001). A taxonomy of global optimization methods based on response surfaces. Journal of Global Optimization, 21(4), 345–383.

    Google Scholar 

  • Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13(4), 455–492.

    Google Scholar 

  • Kecojevic, V., & Radomsky, M. (2005). Flyrock phenomena and area security in blasting-related accidents. Safety Science, 43(9), 739–750.

    Google Scholar 

  • Kennedy, J., & Eberhart, R. C. (1995). A discrete binary version of the particle swarm algorithm. In Systems, Man, and Cybernetics, 1997. In 1997 IEEE international conference on computational cybernetics and simulation (Vol. 5, pp. 4104–4108). IEEE.

  • Khandelwal, M., Armaghani, D. J., Faradonbeh, R. S., Ranjith, P. G., & Ghoraba, S. (2016). A new model based on gene expression programming to estimate air flow in a single rock joint. Environmental Earth Sciences, 75(9), 739.

    Google Scholar 

  • Khari, M., Dehghanbandaki, A., Motamedi, S., & Armaghani, D. J. (2019). Computational estimation of lateral pile displacement in layered sand using experimental data. Measurement, 146, 110–118.

    Google Scholar 

  • Koopialipoor, M., Fallah, A., Armaghani, D. J., Azizi, A., & Mohamad, E. T. (2018). Three hybrid intelligent models in estimating flyrock distance resulting from blasting. Engineering with Computers. https://doi.org/10.1007/s00366-018-0596-4.

    Article  Google Scholar 

  • Koopialipoor, M., Noorbakhsh, A., Noroozi Ghaleini, E., Jahed Armaghani, D., & Yagiz, S. (2019). A new approach for estimation of rock brittleness based on non-destructive tests. Nondestructive Testing and Evaluation. https://doi.org/10.1080/10589759.2019.1623214.

    Article  Google Scholar 

  • Kvasov, D. E., & Sergeyev, Y. D. (2015). Deterministic approaches for solving practical black-box global optimization problems. Advances in Engineering Software, 80, 58–66.

    Google Scholar 

  • Ladegaard-Pedersen, A., & Holmberg, R. (1973). The dependence of charge geometry on flyrock caused by crater effects in bench blasting. Swedish Detonic Research Foundation Report DS, 1973, 1–38.

    Google Scholar 

  • Lemon, J., Bolker, B., Oom, S., Klein, E., Rowlingson, B., Wickham, H., et al. (2009). Plotrix: Various plotting functions. R package version 2.7-2. R Project for Statistical Computing Vienna, Austria.

  • Li, Y., Wu, Y., Zhao, J., & Chen, L. (2017). A Kriging-based constrained global optimization algorithm for expensive black-box functions with infeasible initial points. Journal of Global Optimization, 67(1–2), 343–366.

    Google Scholar 

  • Liao, X., Khandelwal, M., Yang, H., Koopialipoor, M., & Murlidhar, B. R. (2019). Effects of a proper feature selection on prediction and optimization of drilling rate using intelligent techniques. Engineering with Computers. https://doi.org/10.1007/s00366-019-00711-6.

    Article  Google Scholar 

  • Little, T. N., & Blair, D. P. (2010). Mechanistic Monte Carlo models for analysis of flyrock risk. Rock Fragmentation by Blasting, 9, 641–647.

    Google Scholar 

  • Looney, C. G. (1996). Advances in feedforward neural networks: demystifying knowledge acquiring black boxes. IEEE Transactions on Knowledge and Data Engineering, 8(2), 211–226.

    Google Scholar 

  • Lu, X., Hasanipanah, M., Brindhadevi, K., Amnieh, H. B., & Khalafi, S. (2019). ORELM: A novel machine learning approach for prediction of flyrock in mine blasting. Natural Resources Research. https://doi.org/10.1007/s11053-019-09532-2.

    Article  Google Scholar 

  • Lundborg, N., Persson, A., Ladegaard-Pedersen, A., & Holmberg, R. (1975). Keeping the lid on flyrock in open-pit blasting. Engineering and Mining Journal, 176, 95–100.

    Google Scholar 

  • Marto, A., Hajihassani, M., Jahed Armaghani, D., Tonnizam Mohamad, E., & Makhtar, A. M. (2014). A novel approach for blast-induced flyrock prediction based on imperialist competitive algorithm and artificial neural network. Scientific World Journal. https://doi.org/10.1155/2014/643715.

    Article  Google Scholar 

  • McKenzie, C. K. (2009). Flyrock range and fragment size prediction. In Proceedings of the 35th annual conference on explosives and blasting technique, 2. International Society of Explosives Engineers.

  • Mohamad, E. T., Armaghani, D. J., & Motaghedi, H. (2013). The effect of geological structure and powder factor in flyrock accident, Masai, Johor, Malaysia. Electronic Journal of Geotechnical Engineering, 18, 5561–5572.

    Google Scholar 

  • Mohamad, E. T., Koopialipoor, M., Murlidhar, B. R., Rashiddel, A., Hedayat, A., & Armaghani, D. J. (2019a). A new hybrid method for predicting ripping production in different weathering zones through in-situ tests. Measurement. https://doi.org/10.1016/j.measurement.2019.07.054.

    Article  Google Scholar 

  • Mohamad, E. T., Li, D., Murlidhar, B. R., Armaghani, D. J., Kassim, K. A., & Komoo, I. (2019b). The effects of ABC, ICA, and PSO optimization techniques on prediction of ripping production. Engineering with Computers. https://doi.org/10.1007/s00366-019-00770-9.

    Article  Google Scholar 

  • Mohamad, E. T., Murlidhar, B. R., Armaghani, D. J., Saad, R., & Yi, C. S. (2016). Effect of geological structure and blasting practice in fly rock accident at Johor, Malaysia. Jurnal Teknologi, 78(8-6), 15.

    Google Scholar 

  • Monjezi, M., Bahrami, A., & Varjani, A. Y. (2010). Simultaneous prediction of fragmentation and flyrock in blasting operation using artificial neural networks. International Journal of Rock Mechanics and Mining Sciences, 3(47), 476–480.

    Google Scholar 

  • Monjezi, M., Bahrami, A., Varjani, A. Y., & Sayadi, A. R. (2011). Prediction and controlling of flyrock in blasting operation using artificial neural network. Arabian Journal of Geosciences, 4(3–4), 421–425.

    Google Scholar 

  • Murlidhar, B. R., Armaghani, D. J., Mohamad, E. T., & Changthan, S. (2018). Rock fragmentation prediction through a new hybrid model based on imperial competitive algorithm and neural network. Smart Construction Research, 2(3), 1–12.

    Google Scholar 

  • Nelson, M. M., & Illingworth, W. T. (1991). A practical guide to neural nets (Vol. 1). Reading, MA: Addison-Wesley.

    Google Scholar 

  • Nguyen, H., & Bui, X.-N. (2019). Predicting blast-induced air overpressure: a robust artificial intelligence system based on artificial neural networks and random forest. Natural Resources Research, 28(3), 893–907.

    Google Scholar 

  • Nguyen, H., Bui, X.-N., Bui, H.-B., & Cuong, D. T. (2019a). Developing an XGBoost model to predict blast-induced peak particle velocity in an open-pit mine: A case study. Acta Geophysica, 67(2), 477–490.

    Google Scholar 

  • Nguyen, H., Bui, X.-N., Bui, H.-B., & Mai, N.-L. (2018). A comparative study of artificial neural networks in predicting blast-induced air-blast overpressure at Deo Nai open-pit coal mine. Vietnam. Neural Computing and Applications. https://doi.org/10.1007/s00521-018-3717-5.

    Article  Google Scholar 

  • Nguyen, H., Bui, X.-N., & Moayedi, H. (2019b). A comparison of advanced computational models and experimental techniques in predicting blast-induced ground vibration in open-pit coal mine. Acta Geophysica, 67(4), 1025–1037.

    Google Scholar 

  • Nguyen, H., Bui, X.-N., Nguyen-Thoi, T., Ragam, P., & Moayedi, H. (2019c). Toward a state-of-the-art of fly-rock prediction technology in open-pit mines using EANNs model. Applied Sciences, 9(21), 4554.

    Google Scholar 

  • Nguyen, H., Choi, Y., Bui, X.-N., & Nguyen-Thoi, T. (2020). Predicting blast-induced ground vibration in open-pit mines using vibration sensors and support vector regression-based optimization algorithms. Sensors, 20(1), 132.

    Google Scholar 

  • Nguyen, H., Drebenstedt, C., Bui, X.-N., & Bui, D. T. (2019d). Prediction of blast-induced ground vibration in an open-pit mine by a novel hybrid model based on clustering and artificial neural network. Natural Resources Research. https://doi.org/10.1007/s11053-019-09470-z.

    Article  Google Scholar 

  • Persson, P.-A., Holmberg, R., & Lee, J. (2018). Rock blasting and explosives engineering. Boca Raton: CRC Press.

    Google Scholar 

  • Rad, H. N., Hasanipanah, M., Rezaei, M., & Eghlim, A. L. (2018). Developing a least squares support vector machine for estimating the blast-induced flyrock. Engineering with Computers, 34(4), 709–717.

    Google Scholar 

  • Raina, A. K., Chakraborty, A. K., Choudhury, P. B., & Sinha, A. (2011). Flyrock danger zone demarcation in opencast mines: A risk based approach. Bulletin of Engineering Geology and the Environment, 70(1), 163–172.

    Google Scholar 

  • Raina, A. K., Chakraborty, A. K., More, R., & Choudhury, P. B. (2007). Design of factor of safety based criterion for control of flyrock/throw and optimum fragmentation. J Inst Eng India, 87, 13–17.

    Google Scholar 

  • Raina, A. K., Chakraborty, A. K., Ramulu, M., Sahu, P. B., Haldar, A., & Choudhury, P. B. (2004). Flyrock prediction and control in opencast mines: A critical appraisal. Mining Engineers’ Journal, 6(5), 10–20.

    Google Scholar 

  • Rehak, T. R., Bajpayee, T. S., Mowrey, G. L., & Ingram, D. K. (2001). Flyrock issues in blasting.

  • Roth, J. (1979). A model for the determination of flyrock range as a function of shot conditions. US Bureau of Mines contract J0387242. Management Science Associates, Los Altos.

  • Roy, S., Adhikari, G. R., Renaldy, T. A., & Jha, A. K. (2011). Development of multiple regression and neural network models for assessment of blasting dust at a large surface coal mine. Journal of Environmental Science and Technology, 4(3), 284–301.

    Google Scholar 

  • Sadeghi, F., Monjezi, M., & Armaghani, D. J. (2019). Evaluation and optimization of prediction of toe that arises from mine blasting operation using various soft computing techniques. Natural Resources Research. https://doi.org/10.1007/s11053-019-09605-2.

    Article  Google Scholar 

  • Saghatforoush, A., Monjezi, M., Faradonbeh, R. S., & Armaghani, D. J. (2016). Combination of neural network and ant colony optimization algorithms for prediction and optimization of flyrock and back-break induced by blasting. Engineering with Computers, 32(2), 255–266.

    Google Scholar 

  • Sarir, P., Chen, J., Asteris, P. G., Armaghani, D. J., & Tahir, M. M. (2019). Developing GEP tree-based, neuro-swarm, and whale optimization models for evaluation of bearing capacity of concrete-filled steel tube columns. Engineering with Computers. https://doi.org/10.1007/s00366-019-00808-y.

    Article  Google Scholar 

  • Shang, Y., Nguyen, H., Bui, X.-N., Tran, Q.-H., & Moayedi, H. (2019). A novel artificial intelligence approach to predict blast-induced ground vibration in open-pit mines based on the firefly algorithm and artificial neural network. Natural Resources Research, 29, 1–15.

    Google Scholar 

  • Shea, C. W., & Clark, D. (1998). Avoiding tragedy: Lessons to be learned from a flyrock fatality. Coal Age, 103(2), 51–54.

    Google Scholar 

  • Shi, X., Jian, Z., Wu, B., Huang, D., & Wei, W. E. I. (2012). Support vector machines approach to mean particle size of rock fragmentation due to bench blasting prediction. Transactions of Nonferrous Metals Society of China, 22(2), 432–441.

    Google Scholar 

  • Shirani Faradonbeh, R., Jahed Armaghani, D., Abd Majid, M. Z., Tahir, M., Ramesh Murlidhar, B., Monjezi, M., et al. (2016). Prediction of ground vibration due to quarry blasting based on gene expression programming: a new model for peak particle velocity prediction. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-016-0979-2.

    Article  Google Scholar 

  • Siskind, D. E., & Kopp, J. W. (1995). Blasting accidents in mines, a 16-year summary. Cleveland, OH: International Society of Explosives Engineers.

    Google Scholar 

  • Swingler, K. (1996). Applying neural networks: A practical guide. New York: Academic Press.

    Google Scholar 

  • Taheri, K., Hasanipanah, M., Golzar, S. B., & Majid, M. Z. A. (2017). A hybrid artificial bee colony algorithm-artificial neural network for forecasting the blast-produced ground vibration. Engineering with Computers, 33(3), 689–700.

    Google Scholar 

  • Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106(D7), 7183–7192. https://doi.org/10.1029/2000JD900719.

    Article  Google Scholar 

  • Tonnizam Mohamad, E., Jahed Armaghani, D., Hasanipanah, M., Murlidhar, B. R., & Alel, M. N. A. (2016). Estimation of air-overpressure produced by blasting operation through a neuro-genetic technique. Environmental Earth Sciences, 75(2), 1–15. https://doi.org/10.1007/s12665-015-4983-5.

    Article  Google Scholar 

  • Trivedi, R., Singh, T. N., & Gupta, N. (2015). Prediction of blast-induced flyrock in opencast mines using ANN and ANFIS. Geotechnical and Geological Engineering, 33(4), 875–891.

    Google Scholar 

  • Trivedi, R., Singh, T. N., & Raina, A. K. (2014). Prediction of blast-induced flyrock in Indian limestone mines using neural networks. Journal of Rock Mechanics and Geotechnical Engineering, 6(5), 447–454.

    Google Scholar 

  • Ulusay, R., Hudson, J. A., & ISRM. (2007). The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. Commission on Testing Methods. International Society of Rock Mechanics. Compilation Arranged by the ISRM Turkish National Group, Ankara, Turkey, p. 628.

  • Xu, H., Zhou, J., Asteris, G. P., Jahed Armaghani, D., & Tahir, M. M. (2019). Supervised machine learning techniques to the prediction of tunnel boring machine penetration rate. Applied Sciences, 9(18), 3715.

    Google Scholar 

  • Yang, H., Hasanipanah, M., Tahir, M. M., & Bui, D. T. (2019). Intelligent prediction of blasting-induced ground vibration using ANFIS optimized by GA and PSO. Natural Resources Research. https://doi.org/10.1007/s11053-019-09515-3.

    Article  Google Scholar 

  • Zandi, Y., Shariati, M., Marto, A., Wei, X., Karaca, Z., Dao, D., et al. (2018). Computational investigation of the comparative analysis of cylindrical barns subjected to earthquake. Steel Composite Structures, 28(4), 439–447.

    Google Scholar 

  • Zhou, J., Aghili, N., Ghaleini, E. N., Bui, D. T., Tahir, M. M., & Koopialipoor, M. (2019a). A Monte Carlo simulation approach for effective assessment of flyrock based on intelligent system of neural network. Engineering with Computers. https://doi.org/10.1007/s00366-019-00726-z.

    Article  Google Scholar 

  • Zhou, J., Bejarbaneh, B. Y., Armaghani, D. J., & Tahir, M. M. (2019b). Forecasting of TBM advance rate in hard rock condition based on artificial neural network and genetic programming techniques. Bulletin of Engineering Geology and the Environment. https://doi.org/10.1007/s10064-019-01626-8.

    Article  Google Scholar 

  • Zhou, J., Koopialipoor, M., Murlidhar, B. R., Fatemi, S. A., Tahir, M. M., Armaghani, D. J., et al. (2019c). Use of intelligent methods to design effective pattern parameters of mine blasting to minimize flyrock distance. Natural Resources Research. https://doi.org/10.1007/s11053-019-09519-z.

    Article  Google Scholar 

  • Zhou, J., Li, E., Wang, M., Chen, X., Shi, X., & Jiang, L. (2019d). Feasibility of stochastic gradient boosting approach for evaluating seismic liquefaction potential based on SPT and CPT case histories. Journal of Performance of Constructed Facilities, 33(3), 4019024.

    Google Scholar 

  • Zhou, J., Li, X., & Mitri, H. S. (2018). Evaluation method of rockburst: State-of-the-art literature review. Tunnelling and Underground Space Technology, 81, 632–659.

    Google Scholar 

  • Zhou, J., Shi, X., Du, K., Qiu, X., Li, X., & Mitri, H. S. (2016a). Feasibility of random-forest approach for prediction of ground settlements induced by the construction of a shield-driven tunnel. International Journal of Geomechanics, 17(6), 4016129.

    Google Scholar 

  • Zhou, J., Shi, X., & Li, X. (2016b). Utilizing gradient boosted machine for the prediction of damage to residential structures owing to blasting vibrations of open pit mining. Journal of Vibration and Control, 22(19), 3986–3997.

    Google Scholar 

  • Zorlu, K., Gokceoglu, C., Ocakoglu, F., Nefeslioglu, H. A., & Acikalin, S. (2008). Prediction of uniaxial compressive strength of sandstones using petrography-based models. Engineering Geology, 96(3), 141–158.

    Google Scholar 

Download references

Acknowledgment

Authors acknowledge with thanks Prof. Dr. Edy Tonnizam Mohamad Director—Geotropik, Centre of Geoengineering, Universiti Teknologi Malaysia, for provision of data of this study and encouragement given thorough out the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danial Jahed Armaghani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murlidhar, B.R., Kumar, D., Jahed Armaghani, D. et al. A Novel Intelligent ELM-BBO Technique for Predicting Distance of Mine Blasting-Induced Flyrock. Nat Resour Res 29, 4103–4120 (2020). https://doi.org/10.1007/s11053-020-09676-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-020-09676-6

Keywords

Navigation