Skip to main content
Log in

Differential Enrichment of Organic Matter in Saline Lacustrine Source Rocks in a Rift Basin: A Case Study of Paleogene Source Rocks, Dongpu Depression, Bohai Bay Basin

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Organic matter enrichment in shale is one of the key factors that control shale oil resources; however, studies of the mechanism of organic matter enrichment in shale in saline lacustrine rift basins are still lacking. In this study, analyses of total organic content (TOC), stable isotopes of carbon and oxygen for carbonate, major and trace element, rare earth element, biomarker composition, and field emission-scanning electron microscopy analyses were performed on 31 core samples from the source rocks of the middle interval of the third member of the Shahejie Formation (EsM3 ). The aims of these analyses were (1) to investigate the controlling effects of paleoenvironment, paleosalinity, redox conditions, dilution, sediment accumulation rate, terrestrial input, and paleoproductivity on organic matter enrichment, (2) to reconstruct the paleoenvironment, and (3) to propose a model of differential accumulation mechanism for organic matter in saline lacustrine source rocks in rift basins. Results show that obvious differences exist in the paleoenvironment of the EsM3 between the southern and northern regions in the Dongpu Depression. The TOC of the northern source rocks is generally greater than that of the southern source rocks. The southern source rocks were mainly deposited in a closed, warm, and humid environment with medium chemical weathering [the chemical index of alteration (CIA) values and Mg/Ca ratios range from 57.9 to 75.8 and 0.08 to 0.61, with averages of 70.93 and 0.19], with fresh–brackish water, weak water stratification, reducing conditions, moderate paleoproductivity (the P/Ti and P/Al ratios range from 0.13 × 10−4 to 0.26 × 10−4 (mean 0.18 × 10−4) and 5.11 × 10−3 to 11.31 × 10−3 (mean 7.62 × 10−3), respectively). The northern source rocks were mainly deposited in an open, cold, and arid environment with a weak chemical weathering (CIA values and Mg/Ca ratios range from 57.9 to 75.8 and 0.08 to 0.61, with averages of 70.93 and 0.19), with hypersaline water, strong water stratification, strong reducing condition, moderate paleoproductivity [P/Ti and P/Al ratios range from 0.13 × 10−4 to 0.26 × 10−4 (mean 0.18 × 10−4) and 5.11 × 10−3 to 11.31 × 10−3 (mean 7.62 × 10−3)]. The paleosalinity, redox condition, paleoproductivity, and terrestrial input controlled the differential enrichment of organic matter in saline lacustrine source rocks. For the southern region, organic matter enrichment increased with increasing paleosalinity, reduction degree, and terrestrial input. Organic matter enrichment of the northern source rocks increased with increasing paleoproductivity, which was mainly due to high water salinity, stable deep paleowater depth, and strong reducing condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Algeo, T. J., Kuwahara, K., Sano, H., Bates, S., Lyons, T., Elswick, E., et al. (2011). Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1–2), 65–83.

    Google Scholar 

  • Algeo, T. J., & Maynard, J. B. (2004). Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 206(3–4), 289–318.

    Google Scholar 

  • Allen, D. E., Strazisar, B. R., Soong, Y., & Hedges, S. W. (2005). Modeling carbon dioxide sequestration in saline aquifers: Significance of elevated pressures and salinities. Fuel Processing Technology, 86(14), 1569–1580.

    Google Scholar 

  • Carroll, A. R., & Bohacs, K. M. (1999). Stratigraphic classification of ancient lakes: Balancing tectonic and climatic controls. Geology, 27(2), 99–102.

    Google Scholar 

  • Chen, G., Gang, W. Z., Liu, Y. Z., Wang, N., & Guo, Y. (2019). High-resolution sediment accumulation rate determined by cyclostratigraphy and its impact on the organic matter abundance of the hydrocarbon source rock in the Yanchang Formation, Ordos Basin, China. Marine and Petroleum Geology, 103, 1–11.

    Google Scholar 

  • Chen, Z. H., Zha, M., & Jin, Q. (2006). Sedimentary characteristics of the source rocks in fluctuation from Lake Facies: An example from the well Niu-38 in the Dongying depression, China. Journal of Lake Sciences, 18(1), 29–35.

    Google Scholar 

  • Chivas, A. R., Deckker, P., & Shelley, J. M. G. (1986). Strontium content of ostracoda indicates paleosalinity. Nature, 316, 251–253.

    Google Scholar 

  • Demaison, G. T., & Moore, G. T. (1980). Anoxic environments and oil source bed genesis. Organic Geochemistry, 2, 9–31.

    Google Scholar 

  • Didyk, B. M., Simoneit, B. R. T., Brassell, S. C., & Eglinton, G. (1978). Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature, 272, 216–222.

    Google Scholar 

  • Ding, X. J., Liu, G. D., Zha, M., Gao, C. H., & Huang, Z. L. (2016). Geochemical characterization and depositional environment of source rocks of small fault basin in Erlian Basin, northern China. Marine and Petroleum Geology, 69, 231–240.

    Google Scholar 

  • Ding, X. J., Liu, G. D., Zha, M., Huang, Z. L., & Gao, C. H. (2015). Characteristics and origin of lacustrine source rocks in the Lower Cretaceous, Erlian Basin, Northern China. Marine and Petroleum Geology, 66, 939–955.

    Google Scholar 

  • Elderfield, H., & Greaves, M. J. (1982). The rare earth elements in seawater. Nature, 296(5854), 214.

    Google Scholar 

  • Elderfield, H., & Pagett, R. (1986). Rare earth elements in ichthyoliths: Variations with redox conditions and depositional environment. Science of the Total Environment, 49, 175–197.

    Google Scholar 

  • Fontes, J. C., Gasse, F., & Gibert, E. (1996). Holocene environmental changes in Lake Bangong Basin (Western Tibet). Part 1: chronology and stable isotopes of carbonates of a Holocene Lacustrine core. Palaeogeography, Palaeoclimatology, Palaeoecology, 120(1–2), 25–47.

    Google Scholar 

  • Hatch, J., & Leventhal, J. (1992). Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, USA. Chemical Geology, 99, 65–82.

    Google Scholar 

  • He, T. H., Lu, S. F., Li, W. H., Tan, Z. Z., & Zhang, X. W. (2018). Effect of salinity on source rock formation and its control on the oil content in shales in the Hetaoyuan Formation from the Biyang Depression, Nanxiang Basin, Central China. Energy Fuel, 32, 6698–6707.

    Google Scholar 

  • Hofmann, P., Leythaeuser, D., & Carpentier, B. (1988). Palaeoclimate controlled accumulation of organic matter in Oligocene evaporite sediments of the mulhouse basin. Organic Geochemistry, 20(8), 1125–1138.

    Google Scholar 

  • Hu, T. (2016). Impact of saline environment on sedimentary organic matter origin, type, preservation and hydrocarbon generation evolution in small terrestrial faulted lacustrine basin: a case study of the third member of Shahejie Formation in the Dongpu Depression, Bohai Bay Basin. AAPG Search and Discovery Article, 32, 5045–5061.

    Google Scholar 

  • Hu, T., Pang, X. Q., & Jiang, S. (2018a). Impact of paleosalinity, dilution, redox, and paleoproductivity on organic matter enrichment in a saline lacustrine rift basin: A case study of paleogene organic-rich shale in Dongpu depression, Bohai Bay Basin, Eastern China. Energy Fuel, 32, 5045–5061.

    Google Scholar 

  • Hu, T., Pang, X. Q., Jiang, S., Wang, Q. F., Zheng, X. W., & Ding, X. J. (2018b). Oil content evaluation of lacustrine organic-rich shale with strong heterogeneity: A case study of the Middle Permian Lucaogou Formation in Jimusaer Sag, Junggar Basin, NW China. Fuel, 221, 196–205.

    Google Scholar 

  • Hu, Q. H., Zhang, Y. X., & Meng, X. H. (2017). Characterization of micro-nano pore networks in shale oil reservoirs of Paleogene Shahejie Formation in Dongying Sag of Bohai Bay Basin, East China. Petroleum Exploration and Development, 44(5), 720–730.

    Google Scholar 

  • Hughes, W. B., Holba, A. G., & Dzou, L. I. P. (1995). The ratios of dibenzothiophene to phenantherene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochimica et Cosmochimica Acta, 59(17), 3581–3598.

    Google Scholar 

  • Ibach, L. E. J. (1982). Relationship between sedimentation rate and total organic carbon content in ancient marine sediments. AAPG Bulletin, 66, 170–188.

    Google Scholar 

  • Jarvie, D. M. (2012). Shale resource systems for oil and gas: Part 2: Shale-oil resource systems. Shale reservoirs-giant resources for the 21st century. AAPG Memoir, 97, 89–119.

    Google Scholar 

  • Ji, Y. L., Feng, J. H., Wang, S. L., Zhang, H. A., & Wang, D. R. (2005). Shifting of lake shoreline and lithofacies palaeogeography characters during sedimentary period of the Third Member of Shahejie Formation of Paleogene in Dongpu Sag. Journal of Palaeogeography, 145–154.

  • Johnson, K. R., Hu, C., Belshaw, N. S., & Henderson, G. M. (2006). Seasonal trace-element and stable-isotope variations in a Chinese speleothem: The potential for high-resolution paleomonsoon reconstruction. Earth and Planetary Science Letters, 244(1–2), 394–407.

    Google Scholar 

  • Jones, B., & Manning, D. A. C. (1994). Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111, 111–129.

    Google Scholar 

  • Katz, B. J. (1995). Factors controlling the development of lacustrine petroleum source rocks-An Update. In A. Y. Huc, (Ed) Paleogeography, paleoclimate, and source rocks, AAPG Studies in Geology, No. 40, AAPG, Tulsa, OK, pp. 61–79.

  • Kaufman, A. J., Knoll, A. H., & Awramik, S. M. (1992). Biostratigraphic and chemostratigraphic correlation of Neoproterozoic sedimentary successions: Upper Tindir Group, northwestern Canada, as a test case. Geology, 20(2), 181–185.

    Google Scholar 

  • Li, M. W., Chen, Z. H., Ma, X. X., & Cao, T. T. (2019a). Shale oil resource potential and oil mobility characteristics of the Eocene-Oligocene Shahejie Formation, Jiyang Super- Depression, Bohai Bay Basin of China. International Journal of Coal Geology, 204, 130–143.

    Google Scholar 

  • Li, D. L., Li, R. X., Tan, C. Q., Zhao, D., Xue, T., Zhao, B. S., et al. (2019b). Origin of silica, paleoenvironment, and organic matter enrichment in the Lower Paleozoic Niutitang and Longmaxi formations of the northwestern Upper Yangtze Plate: Significance for hydrocarbon exploration. Marine and Petroleum Geology, 103, 404–421.

    Google Scholar 

  • Li, D. L., Li, R. X., Zhu, Z. W., Wu, X. L., Cheng, J. H., & Liu, F. T. (2017a). Origin of organic matter and paleo-sedimentary environment reconstruction of the Triassic oil shale in Tongchuan City, southern Ordos Basin (China). Fuel, 208, 223–235.

    Google Scholar 

  • Li, W. H., Lu, S. F., Tan, Z. Z., & He, T. H. (2017b). Lacustrine source rock deposition in response to coevolution of the paleoenvironment and formation mechanism of organic-rich shales in the Biyang Depression, Nanxiang Basin. Energy Fuel, 31(12), 13519–13527.

    Google Scholar 

  • Li, W. H., Lu, S. F., Xue, H. T., Zhang, P. F., & Wu, S. Q. (2015a). The formation environment and developmental models of argillaceous dolomite in the Xingouzui Formation, the Jianghan Basin. Marine and Petroleum Geology, 67, 692–700.

    Google Scholar 

  • Li, S. M., Pang, X. Q., & Zhang, B. S. (2015b). Marine oil source of the Yingmaili Oilfield in the Tarim Basin. Marine and Petroleum Geology, 68, 18–39.

    Google Scholar 

  • Li, J. J., Yin, J. X., Zhang, Y. N., Lu, S. F., Wang, W. M., Li, J. B., et al. (2015c). A comparison of experimental methods for describing shale pore features: A case study in the Bohai Bay Basin of eastern china. International Journal of Coal Geology, 152, 39–49.

    Google Scholar 

  • Li, W. H., Zhang, Z. H., Li, Y. C., & Fu, N. (2016). The effect of river-delta system on the formation of the source rocks in the Baiyun Sag, Pearl River Mouth Basin. Marine and Petroleum Geology, 76, 279–289.

    Google Scholar 

  • Liu, B., Bai, L. H., Chi, Y. A., Jia, R., Fu, X. F., & Yang, L. (2019). Geochemical characterization and quantitative evaluation of shale oil reservoir by two-dimensional nuclear magnetic resonance and quantitative grain fluorescence on extract: A case study from the Qingshankou Formation in Southern Songliao Basin, northeast China. Marine and Petroleum Geology, 109, 561–573.

    Google Scholar 

  • Liu, J. D., Jiang, Y. L., Tan, Y. M., & Ma, X. S. (2014). Relationship between gypsum-salt rock and oil-gas in Dongpu depression of Bohai Gulf Basin. Acta Sedimentologica Sinica, 32(1), 126–137.

    Google Scholar 

  • Liu, C. L., Li, H. H., Zhang, X., Zheng, S. J., & Zhang, L. (2016). Geochemical characteristics of the Paleogene and Neogene saline lacustrine source rocks in the western Qaidam Basin, Northwestern China. Energy Fuel, 30(6), 4537–4549.

    Google Scholar 

  • Liu, G. H., Liu, B., & Huang, Z. L. (2018). Hydrocarbon distribution pattern and logging identification in lacustrine fine-grained sedimentary rocks of the Permian Lucaogou formation from the Santanghu basin. Fuel, 222, 207–231.

    Google Scholar 

  • Lu, Y. B., Jiang, S., Lu, Y. C., & Xu, S. (2019). Productivity or preservation? The factors controlling the organic matter accumulation in the late Katian through Hirnantian Wufeng organic-rich shale, South China. Marine and Petroleum Geology, 109, 22–35.

    Google Scholar 

  • Lu, K., Zuo, Y. H., Mei, B., Cao, H. M., & Ding, Y. H. (2013). Paleosedimentary environments of the Dongpu depression and their impact on organic matter abundance. Geology Exploration, 49(3), 589–594. (in Chinese with English abstract).

    Google Scholar 

  • Ma, L., Taylor, K. G., Lee, P. D., Dobson, K. J., Dowey, P. J., & Courtois, L. (2016). Novel 3D centimetre-to nano-scale quantification of an organic-rich mudstone: The Carboniferous Bowland Shale, Northern England. Marine and Petroleum Geology, 72, 193–205.

    Google Scholar 

  • Mao, L. J., Mo, D. W., Yang, J. H., Guo, Y. Y., & Lv, H. Y. (2014). Rare earth elements geochemistry in surface floodplain sediments from the Xiangjiang River, middle reach of Changjiang River, China. Quaternary International, 336, 80–88.

    Google Scholar 

  • McLennan, S. M. (1989). Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: B. R. Lipin, G. A. McKay, (Eds.). Geochemistry and mineralogy of rare earth elements, Reviews in Mineralogy & Geochemistry, 21(1), 169–200.

  • Mclennan, S. M. (1993). Weathering and global denudation. Journal of Geology, 101(2), 295–303.

    Google Scholar 

  • Moldowan, J. M., Seifert, W. K., & Gallegos, E. J. (1985). Relationship between petroleum composition and depositional environment of petroleum source rocks. AAPG Bulletin, 69, 1255–1268.

    Google Scholar 

  • Murphy, A. E., Sageman, B. B., Hollander, D. J., Lyons, T. W., & Brett, C. E. (2000). Black shale deposition and faunal overturn in the Devonian Appalachian Basin: Clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling. Paleoceanography, 15, 280–291.

    Google Scholar 

  • Murray, R. W., & Leinen, M. (1993). Chemical transport to the seafloor of the equatorial Pacific Ocean across a latitudinal transect at 135 W: tracking sedimentary major, trace, and rare earth element fluxes at the Equator and the Intertropical Convergence Zone. Geochimica et Cosmochimica Acta, 57(17), 4141–4163.

    Google Scholar 

  • Naeher, S., Gilli, A., North, R. P., Hamann, Y., & Schubert, C. J. (2013). Tracing bottom water oxygenation with sedimentary Mn/Fe ratios in Lake Zurich, Switzerland. Chemical Geology, 352, 125–133.

    Google Scholar 

  • Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885), 715–717.

    Google Scholar 

  • Ning, C. X., Jiang, Z. X., Gao, Z. Y., Su, S. Y., Li, T. W., Wang, G. Z., et al. (2017). Characteristics and controlling factors of reservoir space of mudstone and shale in Es3x in the Zhanhua Sag. Marine and Petroleum Geology, 88, 214–224.

    Google Scholar 

  • Pedersen, T. F., & Calvert, S. E. (1990). Anoxia vs. productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks? AAPG Bulletin, 74, 454–466.

    Google Scholar 

  • Peter, K. E., & Moldowan, J. M. (1993). The biomarker guide: Interpreting molecular fossils in petroleum and ancient sediments. New Jersey, Prentice Hall.

  • Peters, K. E., & Cassa, M. R. (1994). Applied source rock geochemistry: Chapter 5: Part II. Essential elements.

  • Powell, T. G., & Mckirdy, D. M. (1973). Relationship between Ratio of Pristane to Phytane, Crude Oil Composition and Geological Environment in Australia. Nature Physics, 243, 37–39.

    Google Scholar 

  • Price, J. R., & Velbel, M. A. (2003). Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical Geology, 202, 397–416.

    Google Scholar 

  • Rieu, R., Allen, P. A., Plötze, M., & Pettke, T. (2007). Climatic cycles during a Neoproterozoic “snowball” glacial epoch. Geology, 35(4), 299–302.

    Google Scholar 

  • Rosen, M. R., Turner, J. V., Coshell, L., & Gailitis, V. (1995). The effects of water temperature, stratification, and biological activity on the stable isotopic composition and timing of carbonate precipitation in a hypersaline lake. Geochimica et Cosmochimica Acta, 59(5), 979–990.

    Google Scholar 

  • Sachsenhofer, R. F., Bechtel, A., Reischenbacher, D., & Weiss, A. (2003). Evolution of lacustrine systems along the Miocene Mur-Mürz fault system (Eastern Alps, Austria) and implications on source rocks in Pull-apart Basins. Marine and Petroleum Geology, 20(2), 83–110.

    Google Scholar 

  • Schelske, C. L., & Hodeli, D. A. (1991). Recent changes in productivity and climate of Lake Ontario detected by isotopic analysis of sediments. Limnology and Oceanography, 36(5), 961–975.

    Google Scholar 

  • Schwarzkopf, T. A. (1993). Model for prediction of organic carbon in possible source rocks. Marine and Petroleum Geology, 10, 478–492.

    Google Scholar 

  • Shao, X. H., Pang, X. Q., Li, H., Hu, T., Xu, T. W., Xu, Y., et al. (2018). Pore network characteristics of lacustrine shales in the Dongpu Depression, Bohai Bay Basin, China, with implications for oil retention. Marine and Petroleum Geology, 96, 457–473.

    Google Scholar 

  • Shao, X. H., Pang, X. Q., Li, M. W., Qian, M. H., Hu, T., Li, Z. M., et al. (2019). Hydrocarbon retention in lacustrine shales during thermal maturation: Insights from semi-open system pyrolysis. Journal of Petroleum Science and Engineering, 184, 106480.

    Google Scholar 

  • Sholkovitz, E. R. (1995). The aquatic chemistry of the rare earth elements in rivers and estuaries. Aquatic Geochemistry, 1–34.

  • Sinha, R., Smykatz-Kloss, W., Stüben, D., Harrison, S. P., Berner, Z., & Kramar, U. (2006). Late quaternary palaeoclimatic reconstruction from the lacustrine sediments of the Sambhar playa core, Thar Desert margin, India. Palaeogeography, Palaeoclimatology, Palaeoecology, 233(3–4), 252–270.

    Google Scholar 

  • Stuiver, M. (1970). Oxygen and carbon isotope ratios of freshwater carbonates as climatic indicators. Journal of Geophysical Research, 75(27), 5247–5257.

    Google Scholar 

  • Sun, Z. C., Yang, F., & Zhang, Z. H. (1997). Sedimentary environment and hydrocarbon generation of Cenozoic saline lakes in China (p. 363). Beijing, China: Petroleum Industry Press.

    Google Scholar 

  • Talbot, M. R. (1990). A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chemical Geology: Isotope Geoscience Section, 80(4), 261–279.

    Google Scholar 

  • Talbot, M. R., & Kelts, K. (2002). Paleolimnological signatures from carbon and oxygen isotopic ratios in carbonates from organic carbon-rich lacustrine sediments. AAPG Memoir, 50(6), 99–112.

    Google Scholar 

  • Taylor, S. R., & Mclennan, S. M. (1985). The continental crust: Its composition and evolution (p. 312). Oxford, UK: Blackwell.

    Google Scholar 

  • Tyrrell, T. (1999). The relative influences of nitrogen and phosphorus on oceanic primary production. Nature, 400(6744), 525.

    Google Scholar 

  • Veizer, J., & Demovic, R. (1974). Strontium as a tool in facies analysis. Journal of Sedimentary Research, 44(1), 93–115.

    Google Scholar 

  • Wang, M., Sherwood, N., Li, Z. S., Lu, S. F., Wang, W. G., Huang, A. H., et al. (2015). Shale oil occurring between salt intervals in the Dongpu Depression, Bohai Bay Basin, China. International Journal of Coal Geology, 152, 100–112.

    Google Scholar 

  • Warren, J. K. (1986). Shallow-water evaporitic environments and their source rock potential. Journal of Sedimentary Research, 56(3), 442–454.

    Google Scholar 

  • Wehausen, R., & Brumsack, H. J. (2002). Astronomical forcing of the East Asian monsoon mirrored by the composition of Pliocene South China Sea sediments. Earth and Planetary Science Letters, 201(3–4), 621–636.

    Google Scholar 

  • Xie, G. L., Shen, Y. L., Liu, S. G., & Hao, W. D. (2018). Trace and rare earth element (REE) characteristics of mudstones from Eocene Pinghu Formation and Oligocene Huagang Formation in Xihu Sag, East China Sea Basin: Implications for provenance, depositional conditions and paleoclimate. Marine and Petroleum Geology, 92, 20–36.

    Google Scholar 

  • Xu, T. W., Zhang, H. A., Li, J. D., & Zhao, W. (2019). Characters of hydrocarbon generation and accumulation of salt-lakefacies in Dongpu Sag, Bohai Bay Basin. Oil and Gas Geology, 40(2), 248–261.

    Google Scholar 

  • Zhang, Y. Y., He, Z. L., Lu, S. F., Jiang, S., Xiao, D. S., Long, S. X., et al. (2019). Characteristics of microorganisms and origin of organic matter in Wufeng Formation and Longmaxi Formation in Sichuan Basin, South China. Marine and Petroleum Geology, 111, 363–374.

    Google Scholar 

  • Zhang, L. P., Huang, D. F., & Liao, Z. Q. (1999). Gammacerane-Geochemical Indicator of Water Column Stratification. Acta Sedimentologica Sinica, 17(1), 136–140.

    Google Scholar 

  • Zhang, H. A., Xu, T. W., & Zhang, Y. X. (2017). Development characteristics and significance of high quality source rocks of salty lake in Dongpu Depression. Fault-block Oil & Field, 24(4), 437–441. (in Chinese with English abstract).

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (41872128) and Science Foundation of China University of Petroleum, Beijing (2462019BJRC005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fujie Jiang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Jiang, F., Ji, H. et al. Differential Enrichment of Organic Matter in Saline Lacustrine Source Rocks in a Rift Basin: A Case Study of Paleogene Source Rocks, Dongpu Depression, Bohai Bay Basin. Nat Resour Res 29, 4053–4072 (2020). https://doi.org/10.1007/s11053-020-09671-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-020-09671-x

Keywords

Navigation