Skip to main content
Log in

The diet of adult and chick rock shags (Phalacrocorax magellanicus) inferred from combined pellet and stable isotope analyses

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The current information about the diet composition of the rock shag (Phalacrocorax magellanicus) in the SW Atlantic coast comes mainly from conventional pellet or stomach content analysis from a few locations situated in northern Patagonia (Chubut Province, Argentina). In this work, we studied the diet of breeding rock shags over several years at a colony from southern Patagonia (Ría Deseado, Santa Cruz Province, Argentina) using a combined technique of conventional diet assessment (pellet analysis) and stable isotope analysis of carbon and nitrogen. Our results confirm the importance of benthic prey and the low inter-annual variability in the diet of the rock shag. These results coincide with previous research in relation to the exploitation of slow moving, predictable, but low-energy density prey. The stable isotope mixing models, which was informed with prior data obtained from pellet analysis, allowed for the detection of subtle differences between the diet of adults and chicks, consisting in the incorporation of higher proportions of cephalopods, an energy-rich prey, in the diet of chicks. By comparing our results with the diet of the red-legged cormorant, which breeds in sympatry in the Ría Deseado Estuary and whose diet composition is strongly pelagic, we suspect a certain level of trophic resource partitioning between these rock shag and red-legged cormorant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barrett RT, Camphuysen K, Anker-Nilssen T et al (2007) Diet studies of seabirds: a review and recommendations. ICES J Mar Sci 64:1675–1691. https://doi.org/10.1093/icesjms/fsm152

    Article  Google Scholar 

  • Barrionuevo M, Ciancio J, Marchisio N, Frere E (2018) Parental body condition and high energy value of fish determine nestling success in Magellanic penguin (Spheniscus magellanicus). Mar Biol 165:105

    Article  Google Scholar 

  • Bertellotti M, Yorio P (1999) Spatial and temporal patterns in the diet of the kelp gull in Patagonia. Condor 101:790–798

    Article  Google Scholar 

  • Bond AL, Jones IL (2009) A practical introduction to stable-isotope analysis for seabird biologists: approaches, cautions and caveats. Mar Ornithol 37:183–188

    Google Scholar 

  • Boschi E, Fischbach C, Iorio M (1992) Catálogo ilustrado de los crustáceos estomatópodos y decápodos marinos de Argentina. Frente Marítimo 10:7–94

    Google Scholar 

  • Bovcon ND, Cochia PD, Gosztonyi AE (2007) Guía para el reconocimiento de los peces capturados por buques pesqueros monitoreados con observadores a bordo. Publicación especial de la Secretaría de Pesca de la Provincia del Chubut, Rawson, Argentina. Secretaría de Pesca de la Provincia del Chubut, Rawson, Argentina

  • Bulgarella M, Pizarro LC, Quintana F et al (2008) Diet of imperial cormorants (Phalacrocorax atriceps) and rock shags (P. magellanicus) breeding sympatrically in Patagonia. Argentina Ornitol Neotrop 19:553–563

    Google Scholar 

  • Carscadden JE, Montevecchi WA, Davoren GK, Nakashima BS (2002) Trophic relationships among capelin (Mallotus villosus) and seabirds in a changing ecosystem. ICES J Mar Sci 59:1027–1033

    Article  Google Scholar 

  • Casaux RJ, Favero M, Barrera-Oro ER, Silva P (1995) Feeding trial on an imperial Cormorant Phalacrocorax atriceps: preliminary results of fish intake and otolith digestion. Mar Ornithol 23:101–106

    Google Scholar 

  • Chiaradia A, Forero MG, Hobson KA, Swearer SE, Hume F, Renwick L, Dann P (2012) Diet segregation between two colonies of little penguins Eudyptula minor in southeast Australia. Austral Ecol 37:610–619

    Article  Google Scholar 

  • Ciancio JE, Pascual M, Beauchamp D (2007) Energy density of patagonian aquatic organisms and empirical predictions based on water content. Trans Am Fish Soc 136:1415–1422. https://doi.org/10.1577/T06-173.1

    Article  Google Scholar 

  • Ciancio J, Botto F, Frere E (2015) Combining a geographic information system, known dietary, foraging and habitat preferences, and stable isotope analysis to infer the diet of Magellanic Penguins in their austral distribution. Emu 115:237–246. https://doi.org/10.1071/MU14032

    Article  Google Scholar 

  • Ciancio JE, Righi C, Faiella A, Frere E (2016) Blood-specific isotopic discrimination factors in the Magellanic penguin (Spheniscus magellanicus). Rapid Commun Mass Spectrom 30:1865–1869. https://doi.org/10.1002/rcm.7661

    Article  CAS  PubMed  Google Scholar 

  • Craig EC, Dorr BS, Hanson-Dorr KC et al (2015) Isotopic discrimination in the double-crested cormorant (Phalacrocorax auritus). PLoS ONE 10:1–7. https://doi.org/10.1371/journal.pone.0140946

    Article  CAS  Google Scholar 

  • Davoren GK, Burger AE (1999) Differences in prey selection and behaviour during self-feeding and chick provisioning in rhinoceros auklets. Anim Behav 58:853–863. https://doi.org/10.1006/ANBE.1999.1209

    Article  CAS  PubMed  Google Scholar 

  • Elliott ML, Bradley RW, Robinette DP, Jahncke J (2015) Changes in forage fish community indicated by the diet of the Brandt's cormorant (Phalacrocorax penicillatus) in the central California current. J Mar Syst 146:50–58

    Article  Google Scholar 

  • Fernández DA, Lattuca ME, Boy CC et al (2009) Energy density of sub-Antarctic fishes from the Beagle channel. Fish Physiol Biochem 35:181–188. https://doi.org/10.1007/s10695-008-9234-1

    Article  CAS  PubMed  Google Scholar 

  • Fernandez SJ, Yorio P, Ciancio JE (2019) Diet composition of expanding breeding populations of the Magellanic Penguin. Mar Biol Res 15:1–13

    Article  CAS  Google Scholar 

  • Frere E, Gandini P, Lichtschein V (1996) Variación latitudinal en la dieta del pingüino de Magallanes (Spheniscus magellanicus) en la costa patagónica, Argentina. Ornitol Neotrop 7:35–41

    Google Scholar 

  • Frere E, Quintana F, Gandini P (2002) Diving behavior of the red-legged cormorant in Southeastern Patagonia, Argentina. Condor 144:440–444

    Article  Google Scholar 

  • Frere E, Quintana F, Gandini P (2005) Cormoranes de la costa patagónica: estado poblacional, ecología y conservación. Hornero 20:35–52

    Google Scholar 

  • Frere E, Quintana F, Gandini P, Wilson RP (2008) Foraging behaviour and habitat partitioning of two sympatric cormorants in Patagonia, Argentina. Ibis 150:558–564. https://doi.org/10.1111/j.1474-919X.2008.00824.x

    Article  Google Scholar 

  • Gandini PA, Frere E (1998) Seabird and shorebird diversity and associated conservation problems in Puerto Deseado, Patagonia, Argentina. Ornitol Neotrop 9:13–22

    Google Scholar 

  • Gosztonyi AE, Kuba L (1996) Atlas de huesos craneales y de la cintura escapular de peces costeros patagónicos. Fund Patagon Nat Inf Técnico 4:1–29

    Google Scholar 

  • Harrison P, Peterson R (1985) Seabirds: an identification guide. Houghton Mifflin, Boston

    Google Scholar 

  • Hobson KA, Gloutney ML, Gibbs HL (1997) Preservation of blood and tissue samples for stable-carbon and stable-nitrogen isotope analysis. Can J Zool 75:1720–1723. https://doi.org/10.1139/z97-799

    Article  CAS  Google Scholar 

  • Ibarra C, Marinao C, Suárez N, Yorio P (2018) Differences between colonies and chick-rearing stages in imperial Cormorant (Phalacrocorax atriceps) diet composition: implications for trophic studies and monitoring. Wilson J Ornithol 130:224–234. https://doi.org/10.1676/16-184.1

    Article  Google Scholar 

  • Johnsgard P (1993) Cormorants, darters, and pelicans of the world. Smithsonian Inst Pr, Washington, D.C.

    Google Scholar 

  • Karnovsky NJ, Hobson KA, Iverson S, Hunt GL (2008) Seasonal changes in diets of seabirds in the North Water Polynya: a multiple-indicator approach. Mar Ecol Prog Ser 357:291–299

    Article  Google Scholar 

  • Koen Alonso M, Crespo EA, Pedraza SN, Garcia NA, Coscarella MA (2000) Food habits of the South American sea lion, Otaria flavescens, off Patagonia, Argentina. Fish Bull 98:250–263

    Google Scholar 

  • Layman CA, Araujo MS, Boucek R et al (2012) Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol Rev 87:545–562. https://doi.org/10.1111/j.1469-185X.2011.00208.x

    Article  PubMed  Google Scholar 

  • Logan JM, Jardine TD, Miller TJ et al (2008) Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. J Anim Ecol 77:838–846. https://doi.org/10.1111/j.1365-2656.2008.01394.x

    Article  PubMed  Google Scholar 

  • Lombarte A, Rucabado J, Matallanas J, Lloris D (1991) Taxonomía numérica de Nototheniidae en base a la forma de los otolitos. Sci Mar 55:413–418

    Google Scholar 

  • Malacalza VE, Bertellotti NM, Poretti TI (1997) Variación estacional de la dieta de Phalacrocorax magellanicus (Aves: Phalacrocoracidae) en Punta Loma (Chubut, Argentina). Neotrópica 43:35–38

    Google Scholar 

  • Menni RC, Ringuelet RA, Arámburu RA (1984) Peces marinos de la Argentina y Uruguay. Editorial Hemisferio Sur

  • Millones A, Frere E, Gandini P (2005) Dieta del cormorán gris (Phalacrocorax gaimardi) en la Ría Deseado, Santa Cruz, Argentina. Ornitol Neotrop 16:519–527

    Google Scholar 

  • Moore JW, Semmens BX (2008) Incorporating uncertainty and prior information into stable isotope mixing models. Ecol lett 11:470–480

    Article  Google Scholar 

  • Morgenthaler A, Millones A, Gandini P, Frere E (2016) Pelagic or benthic prey? Combining trophic analyses to infer the diet of a breeding South American seabird, the Red-legged Cormorant, Phalacrocorax gaimardi. Emu 116:360–369. https://doi.org/10.1071/MU15101

    Article  Google Scholar 

  • Nasca PB, Nasca PB, Gandini PA et al (2004) Caracterización de las asociaciones de alimentación multiespecíficas de aves marinas en la ría deseado, Santa Cruz, Argentina. Hornero 19:29–36

    Google Scholar 

  • Oksanen J, Blanchet F, Kindt R, et al (2016) Vegan: community ecology package. R package 2.3-3

  • Parnell A (2016). Simmr: a stable isotope mixing model. R package version 0.3. R

  • Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5:1–5. https://doi.org/10.1371/journal.pone.0009672

    Article  CAS  Google Scholar 

  • Phillips DL, Inger R, Bearhop S et al (2014) Best practices for use of stable isotope mixing models in food-web studies. Can J Zool 92:823–835. https://doi.org/10.1139/cjz-2014-0127

    Article  Google Scholar 

  • Piacentino GL (1999) Osteología craneana de Odontesthes nigricans (Richardson 1845) y Odontesthes smitti (Lahille 1929) de la Ría de Puerto Deseado (Santa Cruz, Argentina) (Teleostei, Atherinopsidae). Boletim do Lab de Hidrobiol 12:23–47

    Google Scholar 

  • Pineda S, Aubone A, Brunetti N (1996) Identificación y morfometría de las mandibulas de Loligo gahi y Loligo sanpaulensis (Cephalopoda, Loliginidae) del Atlántico Sudoccidental. Rev Investig y Desarro Pesq 10:85–99

    Google Scholar 

  • Pineda SE, Brunetti NE, Scarlato N (1998) Calamares Loliginidos (Cephalopoda, Loliginidae) Tomo 2. In. ‘El mar argentino y sus recursos pesqueros.’ (Ed E.E. Boschi) pp. 13–36 (INIDEP, Mar del Plata, Argentina)

  • Post D, Layman C, Arrington D, Takimoto G, Quattrochi J, Montaña C (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179–189

    Article  Google Scholar 

  • Punta G, Yorio P, Herrera G (2003) Temporal patterns in the diet and food partitioning in imperial cormorants (Phalacrocorax atriceps) and rock shags (P. magellanicus) breeding at Bahia Bustamante, Argentina. Wilson Bull 115:307–315. https://doi.org/10.1676/02-119

    Article  Google Scholar 

  • Quintana F, Morelli F, Benedetti Y (2002) Buceo eficiente en aguas poco profundas: comportamiento de buceo y patrón de alimentación del Cormorán Cuello Negro, Phalacrocorax magellanicus, en dos colonias de la costa patagónica. Ecol Austral 12:19–28

    Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Sapoznikow A, Quintana F (2005) Patrón de presencia en la colonia del cormorán cuello negro (Phalacrocorax magellanicus): una evidencia del uso de fuentes de alimento predecibles y de baja estacionalidad. Ornitol Neotro 17:95–103

    Google Scholar 

  • Sapoznikow A, Quintana F (2009) Asincronía de puesta y reposición de la nidada en el cormorán cuello negro (Phalacrocorax magellanicus): ¿Evidencias de las características de su fuente de alimento? Hornero 24:21–30

    Google Scholar 

  • Smith JA, Mazumder D, Suthers IM, Taylor MD (2013) To fit or not to fit: evaluating stable isotope mixing models using simulated mixing polygons. Methods Ecol Evol 4:612–618. https://doi.org/10.1111/2041-210X.12048

    Article  Google Scholar 

  • Suryan RM, Irons DB, Brown ED et al (2006) Site-specific effects on productivity of an upper trophic-level marine predator: Bottom-up, top-down, and mismatch effects on reproduction in a colonial seabird. Prog Oceanogr 68:303–328. https://doi.org/10.1016/j.pocean.2006.02.006

    Article  Google Scholar 

  • Tombari AD, Gosztonyi A, Echeverría DD, Volpedo AV (2010) Morfología de los otolitos y las vértebras de especies de aterínidos marinos (Atheriniformes, Atherinopsidae) que coexisten en el Océano Atlántico sudoccidental. Cienc Mar 36:213–223

    Article  Google Scholar 

  • Tramer EJ (1969) Bird species diversity: components of shannon’s formula. Ecology 50:927–929. https://doi.org/10.2307/1933715

    Article  Google Scholar 

  • Turner TF, Collyer ML, Krabbenhoft TJ (2010) A general hypothesis-testing framework for stable isotope ratios in ecological studies. Ecology 91:2227–2233. https://doi.org/10.1890/09-1454.1

    Article  PubMed  Google Scholar 

  • Vanella FA, Fernández DA, Carolina Romero M, Calvo J (2007) Changes in the fish fauna associated with a sub-Antarctic Macrocystis pyrifera kelp forest in response to canopy removal. Polar Biol 30:449–457. https://doi.org/10.1007/s00300-006-0202-x

    Article  Google Scholar 

  • Volpedo A, Echeverría D (2000) Catálogo y claves de otolitos para la identificación de peces del Mar Argentino. Editorial Dunken

  • Votier SC, Bearhop S, Witt MJ et al (2010) Individual responses of seabirds to commercial fisheries revealed using GPS tracking, stable isotopes and vessel monitoring systems. J Appl Ecol 47:487–497. https://doi.org/10.1111/j.1365-2664.2010.01790.x

    Article  Google Scholar 

  • Weimerskirch H (2001) Seabird demography and its relationship with the marine environment. In: Biology of marine birds. CRC press, pp 128–149

  • Yorio P, Frere E, Gandini P, Harris G (1998) Atlas de la distribución reproductiva de aves marinas en el litoral Patagónico Argentino. Fundación Patagonia Natural, Puerto Madryn

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Universidad Nacional de la Patagonia Austral (UNPA) and the Wildlife Conservation Society. We want to thank Fundación Temaikén for providing field and laboratory assistants. Special thanks to Lucas Garbin, Camila MacLaughlin and Evangelina Laztra for their help in the field and in the laboratory. We would also like to thanks the following researchers from CENPAT-CONICET: Nestor García, Atila Gosztonyi and Cyntia Ibarra, for their help in the identification of fish otoliths and bones. All samples were collected under permission of the competent authority from the Santa Cruz Province. We are also grateful to Carolina Mirallas from the Scientific English Laboratory of the UNPA for reviewing the English text. Finally, we would like to thank Dra. Andrea Raya Rey, and an anonymous referee, for reviewing an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annick Morgenthaler.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and handling of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morgenthaler, A., Millones, A., Gandini, P. et al. The diet of adult and chick rock shags (Phalacrocorax magellanicus) inferred from combined pellet and stable isotope analyses. Polar Biol 43, 511–521 (2020). https://doi.org/10.1007/s00300-020-02653-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-020-02653-y

Keywords

Navigation