Skip to main content
Log in

One-pot synthesis of dihydro-8H acenaphtho[1′,2′:4,5]pyrrolo[1,2-a]imidazole-diol derivatives

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A simple and efficient method for the synthesis of dihydro-8H-acenaphtho[1′,2′:4,5]pyrrolo[1,2-a]imidazole-diol derivatives via one-pot, four-component reaction of 1,1-bis(methylthio)-2-nitroethene, various amines, and acenaphthoquinone was developed. All the reactions were carried out in ethanol at reflux without any catalyst. The main advantages of this method are good to high yields, experimental simplicity, mild reaction conditions, simple workup, and easy purification.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Scheme 3

Similar content being viewed by others

References

  1. Taylor RD, MacCoss M, Lawson ADG (2014) Rings in drugs: miniperspective. J Med Chem 57:5845–5859. https://doi.org/10.1021/jm4017625

    Article  CAS  PubMed  Google Scholar 

  2. Bayat M, Hosseini FS (2018) Rapid synthesis of (E)-5-amino-N′-benzylidene-8-nitro-7-aryl-3,7-dihydro-2H-thiazolo[3,2-a]pyridine-6-carbohydrazide derivatives. J Sulfur Chem 39:279–293. https://doi.org/10.1080/17415993.2017.1422504

    Article  CAS  Google Scholar 

  3. Pozharskii AF, Soldatenkov AT, Katritzky AR (2011) Heterocycles in life and society: an introduction to heterocyclic chemistry, biochemistry and applications, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  4. Yavari I, Khajeh-Khezri A (2018) Recent advances in the synthesis of hetero- and carbocyclic compounds- and complexes based on acenaphthylene-1,2-dione. Synthesis 50:3947–3973. https://doi.org/10.1055/s-0037-1610209

    Article  CAS  Google Scholar 

  5. Martins P, Jesus J, Santos S, Raposo L, Roma-Rodrigues C, Baptista P, Fernandes A (2015) Heterocyclic anticancer compounds: recent advances and the paradigm shift towards the use of nanomedicine’s tool boxm. Molecules 20:16852–16891. https://doi.org/10.3390/molecules200916852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gomtsyan A (2012) Heterocycles in drugs and drug discovery. Heterocycl Compd 48:7–10. https://doi.org/10.1007/s10593-012-0960-z

    Article  CAS  Google Scholar 

  7. Broughton HB, Watson LA (2004) Selection of heterocycles for drug design. J Mol Graph Model 23:51–58. https://doi.org/10.1016/j.jmgm.2004.03.016

    Article  CAS  PubMed  Google Scholar 

  8. Burli RW, McMinn D, Kaizerman JA, Hu W, Ge Y, Pack Q, Jiang V, Gross M, Garcia M, Tanaka R, Moser HE (2004) DNA binding ligands targeting drug-resistant gram-positive bacteria. Part 1: internal benzimidazole derivative. Bioorg Med Chem Lett 14:1253–1257. https://doi.org/10.1016/j.bmcl.2003.12.042

    Article  CAS  PubMed  Google Scholar 

  9. Jonas R, Klockow M, Lues I, Pruecher H, Schliep HJ, Wurziger H (1993) Synthesis and biological activities of meribendan and related heterocyclic benzimidazolo-pyridazinones. Eur J Med Chem 28:129–140. https://doi.org/10.1016/0223-5234(93)90005-Y

    Article  CAS  Google Scholar 

  10. Lehuede J, Fauconneau B, Barrier L, Ourakow M, Piriou A, Vierfond JM (1999) Synthesis and antioxidant activity of new tetraarylpyrroles. Eur J Med Chem 34:991–996. https://doi.org/10.1016/S0223-5234(99)00111-7

    Article  CAS  PubMed  Google Scholar 

  11. Toja E, Selva D, Schiatti P (1984) 3-Alkyl-2-aryl-3H-naphth[1,2-d]imidazoles, a novel class of nonacidic antiinflammatory agents. J Med Chem 27:610–616. https://doi.org/10.1021/jm00371a010

    Article  CAS  PubMed  Google Scholar 

  12. Demopoulos VJ, Rekka E (1995) Isomeric benzoylpyrroleacetic acids: some structural aspects for aldose reductase inhibitory and anti-inflammatory activities. Pharm Sci 84:79–82. https://doi.org/10.1002/jps.2600840119

    Article  CAS  Google Scholar 

  13. Denny WA, Rewcastle GW, Baguley BC (1990) Potential antitumor agents. 59. Structure-activity relationships for 2-phenylbenzimidazole-4-carboxamides, a new class of minimal DNA-intercalating agents which may not act via topoisomerase II. J Med Chem 33:814–819. https://doi.org/10.1021/jm00164a054

    Article  CAS  PubMed  Google Scholar 

  14. Poeta MD, Schell WA, Dykstra CC, Jones S, Tidwell RR, Czarny A, Bajic M, Bajic M, Kumar A, Boykin D, Perfect JR (1998) Structure-in vitro activity relationships of pentamidine analogues and dication-substituted bis-benzimidazoles as new antifungal agents. Antimicrob Agents Chemother 42:2495–2502. https://doi.org/10.1128/AAC.42.10.2495

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lee H, Lee J, Lee S, Shin Y, Jung W, Kim JH, Park K, Kim K, Cho HS, Ro S, Lee S (2001) A novel class of highly potent, selective, and non-peptidic inhibitor of Ras farnesyltransferase (FTase). Bioorg Med Chem Lett 11:3069–3072. https://doi.org/10.1016/S0960-894X(01)00624-2

    Article  CAS  PubMed  Google Scholar 

  16. Kaur R, Rani V, Abbot V, Kapoor Y, Konar D, Kumar K (2017) Recent synthetic and medicinal perspectives of pyrroles: an overview. J Pharm Chem Chem Sci 1(2017):17–32

    Google Scholar 

  17. Wang KM, Yan SJ, Lin J (2014) Heterocyclic ketene aminals: scaffolds for heterocycle molecular diversity. Eur J Org Chem 6:1129–1145. https://doi.org/10.1002/ejoc.201300929

    Article  CAS  Google Scholar 

  18. Alizadeh A, Zarei A, Rezvanian A (2011) novel and one-pot multicomponent approach to the synthesis of dihyroindeno [1,2-b] pyrroles and indeno [2′,1′: 4,5] pyrrolo [1,2-a]-fused 1,3-diazaheterocycles. Synthesis 3:497–501. https://doi.org/10.1055/s-0030-1258383

    Article  CAS  Google Scholar 

  19. Chen XB, Luo TB, Gou GZ, Wang J, Liu W, Lin J (2015) Selective synthesis of acenaphtho[1,2-b]indole derivatives via tandem regioselective aza-ene addition/n-cyclization/sn1 type reaction. Asian J Org Chem 4:921–928. https://doi.org/10.1002/ajoc.201500159

    Article  CAS  Google Scholar 

  20. Liu XM, Lin XR, Yan SJ, Peng MY, Huang R, Lin J (2016) Environmentally friendly approach to convergent synthesis of highly functionalized indanone fused multicyclic pyrrolines. Tetrahedron 72:5314–5322. https://doi.org/10.1016/j.tet.2016.07.006

    Article  CAS  Google Scholar 

  21. Rahimi F, Hosseini H, Bayat M (2018) A one-pot three-component approach to synthesis of novel dihydroxyoxoindeno[1,2-b]pyrrole derivatives. Tetrahedron Lett 59:818–822. https://doi.org/10.1016/j.tetlet.2018.01.050

    Article  CAS  Google Scholar 

  22. Chen N, Zou M, Tian X, Zhu F, Jiang D, Cheng J, Shao X, Li Z (2014) Isomerization of ninhydrin–heterocyclic ketene aminal adducts: kinetic versus thermodynamic control, solvent dependency and mechanism. Eur J Org Chem 28:6210–6218. https://doi.org/10.1002/ejoc.201402677

    Article  CAS  Google Scholar 

  23. Pradhan K, Paul S, Das AR (2015) Synthesis of indeno and acenaphtho cores containing dihydroxy indolone, pyrrole, coumarin and uracil fused heterocyclic motifs under sustainable conditions exploring the catalytic role of the SnO2 quantum dot. RSC Adv 5:12062–12070. https://doi.org/10.1039/c4ra12618a

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of this research from Imam Khomeini International University, Iran, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Bayat.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 9489 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vala, M.M., Bayat, M. & Bayat, Y. One-pot synthesis of dihydro-8H acenaphtho[1′,2′:4,5]pyrrolo[1,2-a]imidazole-diol derivatives. Mol Divers 25, 925–935 (2021). https://doi.org/10.1007/s11030-020-10078-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10078-2

Keywords

Navigation