Skip to main content
Log in

Polarizability: a promising descriptor to study chemical–biological interactions

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Recently, we have defined atomic polarizability, a Conceptual Density Functional Theory (CDFT)-based reactivity descriptor, through an empirical method. Though the method is empirical, it is competent enough to meet the criteria of periodic descriptors and exhibit relativistic effect. Since the atomic data are very accurate, we have applied them to determine molecular polarizability. Molecular polarizability is an electronic parameter and has an impact on chemical–biological interactions. Thus, it plays a pivotal role in explaining such interactions through Structure Activity Relationships (SAR). In the present work, we have explored the application of polarizability in the real field through investigation of chemical–biological interactions in terms of molecular polarizability. A Quantitative Structure–Activity Relationship (QSAR) model is constructed to account for electronic effects owing to polarizability in ligand–substrate interactions. The study involves the prediction of various biological activities in terms of minimum block concentration, relative biological response, inhibitory growth concentration or binding affinity. Superior results are presented for the predicted and observed activities which support the accuracy of the proposed polarizability-QSAR model. Further, the results are considered from a biological viewpoint in order to understand the mechanism of interactions. The study is performed to explore the efficacy of the computational model based on newly proposed polarizability and not to establish the finest QSAR. For future studies, it is suggested that the descriptor polarizability should be contrasted with the use of other drug-like descriptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dalgarno A (1962) Atomic polarizabilities and shielding factors. Adv Phys 11:281–315. https://doi.org/10.1080/00018736200101302

    Article  CAS  Google Scholar 

  2. Bonin KD, Kresin VV (1997) Electric-dipole polarizabilities of atoms, molecules and clusters. World Scientific, Singapore

    Book  Google Scholar 

  3. Tandon H, Chakraborty T, Suhag V (2019) A new scale of atomic static dipole polarizability invoking other periodic descriptors. J Math Chem 57:2142–2153. https://doi.org/10.1007/s10910-019-01055-8

    Article  CAS  Google Scholar 

  4. Selassie CD, Shusterman AJ, Kapur S, Verma RP, Zhang L, Hansch C (1999) On the toxicity of phenols to fast growing cells. A QSAR model for a radical-based toxicity. J Chem Soc Perkin Trans 2:2729–2733. https://doi.org/10.1039/A905764A

    Article  Google Scholar 

  5. Hansch C, Gao H (1997) Comparative QSAR: Radical reactions of benzene derivatives in chemistry and biology. Chem Rev 97:2995–3060. https://doi.org/10.1021/cr9601021

    Article  CAS  PubMed  Google Scholar 

  6. Selassie CD, Garg R, Kapur S, Kurup A, Verma RP, Mekapati SB, Hansch C (2002) Comparative QSAR and the radical toxicity of various functional groups. Chem Rev 102:2585–2606. https://doi.org/10.1021/cr940024m

    Article  CAS  PubMed  Google Scholar 

  7. Pauling L (1960) The nature of the chemical bond. Cornell University Press, Ithaca

    Google Scholar 

  8. Pauling L, Pressman D (1945) The serological properties of simple substances. IX. Hapten inhibition of precipitation of antisera homologous to the o-, m-, and p-azophenylarsonic acid groups. J Am Chem Soc 67:1003–1012. https://doi.org/10.1021/ja01222a033

    Article  CAS  Google Scholar 

  9. Kutter E, Hansch C (1969) The use of substituent constants in the quantitative treatment of hapten-antibody interaction. Arch Biochem Biophys 135:126–135. https://doi.org/10.1016/0003-9861(69)90523-2

    Article  CAS  PubMed  Google Scholar 

  10. Agin D, Hersh L, Holtzman D (1965) The action of anesthetics on excitable membranes: a quantum-chemical analysis. Proc Natl Acad Sci USA 53:952–958. https://doi.org/10.1073/pnas.53.5.952

    Article  CAS  PubMed  Google Scholar 

  11. Kamlet MJ, Doherty RM, Abraham MH, Taft RW (1988) Solubility properties in biological media. 12. Regarding the mechanism of nonspecific toxicity or narcosis by organic nonelectrolytes. Quant Struct-Act Relat 7:71–78. https://doi.org/10.1002/qsar.19880070204

    Article  CAS  Google Scholar 

  12. Hahin R, Kondratiev A (2001) ED50AP block predictions for phenyl substituted and unsubstituted n-alkanols. J Membr Biol 180:137–145. https://doi.org/10.1007/s002320010065

    Article  CAS  PubMed  Google Scholar 

  13. Wien R, Mason DFJ (1953) The Pharmacological Actions of a Series of Phenyl Alkane p-ω-bis(trialkylammonium) Compounds*. Br J Pharmacol Chemother 8:306–314. https://doi.org/10.1111/j.1476-5381.1953.tb00799.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nishimura K, Ohoka M, Fujita T (1987) Quantitative structure-activity studies of pyrethroids: 10. Physicochemical substituent effects of substituted benzyl pyrethrates on symptomatic and neurophysiological activities. Pest Biochem Physiol 28:257–270. https://doi.org/10.1016/0048-3575(87)90024-1

    Article  CAS  Google Scholar 

  15. García-Jacas CR, Contreras-Torres E, Marrero-Ponce Y, Pupo-Meriño M, Barigye SJ, Cabrera-Leyva L (2016) Examining the predictive accuracy of the novel 3D N-linear algebraic molecular codifications on benchmark datasets. J Cheminform 8:10. https://doi.org/10.1186/s13321-016-0122-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. García-Jacas CR, Marrero-Ponce Y, Brizuela CA, Suárez-Lezcano J, Martinez-Rios F (2019) Smoothed spherical truncation based on fuzzy membership functions: application to the molecular encoding. J Comput Chem. https://doi.org/10.1002/jcc.26089

    Article  PubMed  Google Scholar 

  17. Leo A, Hansch C, Church C (1969) Comparison of parameters currently used in the study of structure-activity relationships. J Med Chem 12:766–771. https://doi.org/10.1021/jm00305a010

    Article  CAS  PubMed  Google Scholar 

  18. Seeman P (1972) The membrane actions of anesthetics and tranquilizers. Pharmacol Rev 24:583–655

    CAS  PubMed  Google Scholar 

  19. Pringle MJ, Brown KB, Miller KW (1981) Can the lipid theories of anesthesia account for the cutoff in anesthetic potency in homologous series of alcohols? Mol Pharmacol 19:49–55

    CAS  PubMed  Google Scholar 

  20. Requena J, Haydon DA (1985) Is there a ‘cut-off’ in the adsorption of long chain amphipathic molecules into lipid membranes? Biochim Biophys Acta Biomembr 814:191–194. https://doi.org/10.1016/0005-2736(85)90436-5

    Article  CAS  Google Scholar 

  21. Abraham MH, Lieb WR, Franks NP (1991) Role of hydrogen bonding in general anesthesia. J Pharm Sci 80:719–724. https://doi.org/10.1002/jps.2600800802

    Article  CAS  PubMed  Google Scholar 

  22. Franks NP, Lieb WR (1994) Molecular and cellular mechanisms of general anaesthesia. Nature 367:607–614

    Article  CAS  Google Scholar 

  23. Eswaramoorthy S, Kumaran D, Swaminathan S (2002) A novel mechanism for Clostridium botulinum neurotoxin inhibition. Biochemistry 41:9795–9802. https://doi.org/10.1021/bi020060c

    Article  CAS  PubMed  Google Scholar 

  24. Kagabu S, Ishihara R, Hieda Y, Nishimura K, Naruse Y (2007) Insecticidal and neuroblocking potencies of variants of the imidazolidine moiety of imidacloprid-related neonicotinoids and the relationship to partition coefficient and charge density on the pharmacophore. J Agric Food Chem 55:812–818. https://doi.org/10.1021/jf0623440

    Article  CAS  PubMed  Google Scholar 

  25. Mercader AG, Pomilio AB (2010) QSAR study of flavonoids and biflavonoids as influenza H1N1 virus neuraminidase inhibitors. Eur J Med Chem 45:1724–1730. https://doi.org/10.1016/j.ejmech.2010.01.005

    Article  CAS  PubMed  Google Scholar 

  26. Bober L, Kawczak P, Baczek T (2012) QSAR analysis of compounds exhibiting general anesthetics’ properties. Lett Drug Des Discov 9:595–603. https://doi.org/10.2174/157018012800673065

    Article  CAS  Google Scholar 

  27. Kawczak P, Bober L, Baczek T (2014) Biological Activity of Compounds Exhibiting Local Anesthetics's Properties Evaluated by QSAR Approach. Curr Pharm Anal 10:255–262

    Article  CAS  Google Scholar 

  28. Roy K, Kar S, Das RN (2015) Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment. Academic press, Cambridge

    Google Scholar 

  29. Wang Y, Yang X, Wang J, Cong Y, Mu J, Jin F (2016) A DFT-based toxicity QSAR study of aromatic hydrocarbons to Vibrio fischeri: consideration of aqueous freely dissolved concentration. J Hazard Mater 308:149–156. https://doi.org/10.1016/j.jhazmat.2016.01.006

    Article  CAS  PubMed  Google Scholar 

  30. Loron AG, Sardari S, Narenjkar J, Sayyah M (2017) In silico screening and evaluation of the anticonvulsant activity of docosahexaenoic acid-like molecules in experimental models of seizures. Iran Biomed J 21:32–39

    Article  Google Scholar 

  31. Bakire S, Yang X, Ma G, Wei X, Yu H, Chen J, Lin H (2018) Developing predictive models for toxicity of organic chemicals to green algae based on mode of action. Chemosphere 190:463–470. https://doi.org/10.1016/j.chemosphere.2017.10.028

    Article  CAS  PubMed  Google Scholar 

  32. Tandon H, Chakraborty T, Suhag V (2019) A new model of atomic nucleophilicity index and its application in the field of QSAR. Int J Quant Struct Prop Relatsh 4:99–117. https://doi.org/10.4018/IJQSPR.2019070104

    Article  Google Scholar 

  33. Shafiei F, Esmaeili E (2019) QSAR models to predict physico-chemical properties of some barbiturate derivatives using molecular descriptors and genetic algorithm-multiple linear regressions. Iran Chem Commun 7:221–231. https://doi.org/10.30473/icc.2018.5113

    Article  Google Scholar 

  34. Tandon H, Chakraborty T, Suhag V (2019) A model of atomic compressibility and its application in QSAR domain for toxicological property prediction. J Mol Model 25:303. https://doi.org/10.1007/s00894-019-4199-9

    Article  CAS  PubMed  Google Scholar 

  35. Politzer P, Murray JS, Bulat FA (2010) J Mol Model 16:1731–1742. https://doi.org/10.1007/s00894-010-0709-5

    Article  CAS  PubMed  Google Scholar 

  36. Kang YK, Jhon MS (1982) Additivity of atomic static polarizabilities and dispersion coefficients. Theoret Chim Acta 61:41–48. https://doi.org/10.1007/BF00573863

    Article  CAS  Google Scholar 

  37. Miller KJ (1990) Additivity methods in molecular polarizability. J Am Chem Soc 112:8533–8542. https://doi.org/10.1021/ja00179a044

    Article  CAS  Google Scholar 

  38. Schultz TW (1997) TETRATOX: Tetrahymena pyriformis population growth impairment endpoint: a surrogate for fish lethality. Toxicol Methods 7:289–309. https://doi.org/10.1080/105172397243079

    Article  CAS  Google Scholar 

  39. Bӧhm M, Stürzebecher J, Klebe G (1999) 3D QSAR Analyses using CoMFA and CoMSIA to elucidate selectivity differences of inhibitors binding to trypsin, thrombin and factor Xa. J Med Chem 42:458–477. https://doi.org/10.1021/jm981062r

    Article  Google Scholar 

  40. Minitab 17 Statistical Software (2010) [Computer software] State College, PA. Minitab, Inc. (www.minitab.com)

  41. Kondratiev A, Hahin R (2001) ED50GNa block predictions for phenyl substituted and unsubstituted n-alkanols. J Membr Biol 180:123–136. https://doi.org/10.1007/s002320010064

    Article  CAS  PubMed  Google Scholar 

  42. Sutherland JJ, O'Brien LA, Weaver DF (2004) A comparison of methods for modeling quantitative structure−activity relationships. J Med Chem 47:5541–5554. https://doi.org/10.1021/jm0497141

    Article  CAS  PubMed  Google Scholar 

  43. López-López E, Naveja JJ, Medina-Franco JL (2019) DataWarrior: an evaluation of the open-source drug discovery tool. Expert Opin Drug Discov 14:335–341. https://doi.org/10.1080/17460441.2019.1581170

    Article  PubMed  Google Scholar 

  44. Klamt A, Thormann M, Wichmann K, Tosco P (2012) COSMO sar3D: molecular field analysis based on local COSMO σ-profiles. J Chem Inf Model 52:2157–2164. https://doi.org/10.1021/ci300231t

    Article  CAS  PubMed  Google Scholar 

  45. Tosco P, Balle T (2011) A 3D-QSAR-driven approach to binding mode and affinity prediction. J Chem Inf Model 52:302–307. https://doi.org/10.1021/ci200411s

    Article  CAS  PubMed  Google Scholar 

  46. Bonachéra F, Horvath D (2008) Fuzzy tricentric pharmacophore fingerprints. 2. Application of topological fuzzy pharmacophore triplets in quantitative structure− activity relationships. J Chem Inf Model 48:409–425. https://doi.org/10.1021/ci7003237

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Presidency University, Bengaluru; Manipal University Jaipur, Jaipur; and BML Munjal University, Gurugram for providing research facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanmoy Chakraborty.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 838 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tandon, H., Ranjan, P., Chakraborty, T. et al. Polarizability: a promising descriptor to study chemical–biological interactions. Mol Divers 25, 249–262 (2021). https://doi.org/10.1007/s11030-020-10062-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10062-w

Keywords

Navigation