Skip to main content

Advertisement

Log in

The food source of Sargasso Sea leptocephali

  • Review, Concept, and Synthesis
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The mysterious food source of anguilliform leptocephali has been difficult to understand, so this review evaluates potential interrelationships among recent discoveries on this subject. There are typically few identifiable gut-content objects in leptocephalus intestines, which usually contain amorphous materials. Gut content observation studies and stable isotope research have suggested that marine snow detrital-type particles are a food source, but this was difficult to validate. Recent gut-content DNA-sequence analyses indicated that small 4–25 mm Sargasso Sea European eel larvae, Anguilla anguilla, frequently ingest calycophoran siphonophore tissues as well as other taxa not likely to be ingested individually. A high-magnification photographic study of Sargasso Sea leptocephalus gut contents recently detected possible hydrozoan tentacles and apparent fatty acid-rich single-celled, heterotrophic thraustochytrid protists (class Labyrinthulomycetes), which have been found in marine snow in previous studies, but are not amplified by some DNA primers. Calycophoran siphonophores are abundant in the Sargasso Sea and have extensive tentacle arrays and short-lived eudoxid reproductive stages that might be appropriate sizes to be eaten directly or contribute to marine snow aggregates. The two groups may be interrelated because thraustochytrids are ubiquitously present decomposers that colonize detrital materials in oceanic and coastal ecosystems, so both siphonophore tissues and thraustochytrids may be present in marine snow consumed by European eel and other leptocephali. Therefore, future research on what leptocephali consume as food should be approached from a size-scaling perspective using systematic direct gut-content observations in combination with appropriate primers for next-generation DNA sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

modified from Miller et al. (2019), and d the whole body of a 14.3 mm A. anguilla. The different sizes of larvae show fewer proportionally longer teeth in the small larvae compared to the larger ones. Scale bars: 1 mm

Fig. 2

modified from Miller et al. (2019). Scale bars 1 mm

Fig. 3

(modified from Manikan et al. 2015), and g aggregates of the thraustochystrid Schizochytrium aggregatum in the laboratory (modified from Boro et al. 2018). Scale bars a, b, d, e 50 μm, f 10 μm, g 20 μm

Fig. 4
Fig. 5
Fig. 6

modified from Mapstone, 2014), a sequential depiction of the movements of Muggiaea atlantica to deploy its tentacle array for feeding on small copepods (b; modified from Blackett 2015-originally drawn by Mackie and Boag, 1963), and the life-cycle stages of Muggiaea kochi that were reared in the laboratory (c; modified from Blackett 2015-originally drawn by Carré and Carré 1991). At 24 °C, the larval development period took 7 days, and after 1–2 days of feeding during the polygastric stage the eudoxid stages were released that matured during the next 5 days and released their eggs and then died. The dead eudoxid bodies would then contribute to POM in the water column and are a likely candidate for being consumed by leptocephali in the same way as discarded appendicularian houses

Fig. 7
Fig. 8

modified from Li et al. (2013), and c a phytoplankton detritus sample from the North Sea viewed with contrast microscopy showing the presence of many round TH cells (modified from Raghukumar and Shaumann, 1993). Scale bar is 5 μm

Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alldredge AL (1976) Discarded appendicularian houses as sources of food, surface habitats, and particulate organic matter in planktonic environments. Limnol Oceanogr 21:14–23

    Article  CAS  Google Scholar 

  • Alldredge AL, Silver MW (1988) Characteristics, dynamics and significance of marine snow. Progr Oceanogr 20:41–82

    Article  Google Scholar 

  • Amacher J, Neuer S, Anderson I, Massana R (2009) Molecular approach to determine contributions of the protist community to particle flux. Deep-Sea Res I 56:2206–2215

    Article  CAS  Google Scholar 

  • Amacher J, Neuer S, Lomas M (2013) DNA-based molecular finger printing of eukaryotic protists and cyanobacteria contributing to sinking particle flux at the Bermuda Atlantic time-series study. Deep-Sea Res II 93:71–83

    Article  CAS  Google Scholar 

  • Andersen V, Sardou J, Nival P (1992) The diel migrations and vertical distributions of zooplankton and micronekton in the Northwestern Mediterranean Sea. 2. Siphonophores, hydromedusae and pyrosomids. J Plankt Res 14:1155–1169

    Article  Google Scholar 

  • Andersen NG, Nielsen TG, Jakobsen HH, Munk P, Riemann L (2011) Distribution and production of plankton communities in the subtropical convergence zone of the Sargasso Sea. II. Protozooplankton and copepods. Mar Ecol Prog Ser 426:71–86

    Article  Google Scholar 

  • Ayala DJ, Munk P, Lundgreen RBC, Traving SJ, Jaspers C, Jørgensen TS, Hansen LH, Riemann L (2018) Gelatinous plankton is important in the diet of European eel (Anguilla anguilla) larvae in the Sargasso Sea. Sci Rep 8:6156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Biggs DC (1977) Field studies of fishing, feeding, and digestion in siphonophores. Mar Behav Physiol 4:261–274

    Article  Google Scholar 

  • Blackett M (2015) Biology and ecology of the siphonophore Muggiaea atlantica in the northeast Atlantic. PhD Dissertation, Univ Southampton

  • Boaventura CM, Coelho FJRC, Martins PT, Pires ACC, Duarte LN, Uetanabaro APT, Cleary DFR, Gomes NCM (2018) Micro-eukaryotic plankton diversity in an intensive aquaculture system for production of Scophthalmus maximus and Solea senegalensis. Aquaculture 490:321–328

    Article  CAS  Google Scholar 

  • Bochdansky AB, Clouse MA, Herndl GJ (2017) Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J 11:362–373

    Article  PubMed  Google Scholar 

  • Bongiorni L, Pignataro L, Santangelo G (2004) Thraustochytrids (fungoid protists): an unexplored component of marine sediment microbiota. Sci Marina 68:43–48

    Article  CAS  Google Scholar 

  • Bongiorni L, Jain R, Raghukumar S, Aggarwai RM (2005a) Thraustochytrium gaertnerium sp. nov: a new thraustochytrid stramenopilan protist from mangroves of Goa. India Protist 156:303–315

    Article  PubMed  Google Scholar 

  • Bongiorni L, Pusceddu A, Danovaro R (2005b) Enzymatic activities of epiphytic and benthic thraustochytrids involved in organic matter degradation. Aquat Microb Ecol 41:99–305

    Article  Google Scholar 

  • Bonhommeau S, Chassot E, Planque B, Rivot E, Knap AH, Le Pap O (2008) Impact of climate on eel populations of the Northern Hemisphere. Mar Ecol Progr Ser 373:71–80

    Article  Google Scholar 

  • Boro MC, Hrakava R, Pires-Zottarelli CLA (2018) Labyrinthulomycota from Brazilian mangrove swamps and coastal waters. Botanica Marina 61:65–74

    Article  CAS  Google Scholar 

  • Bouillon J, Gravili C, Pagès F, Gili J-M, Boero F (2006) An introduction to Hydrozoa. Mémoires du Muséum national d’Histoire naturelle. Tome 194

  • Castle PHJ (1963) The systematics, development and distribution of two eels of the genus Gnathophis (Congridae) in Australasian waters. Zool Publ Vict Univ Well 34:1–47

    Google Scholar 

  • Castle PHJ (1965) Leptocephali of the Nemichthyidae, Serrivomeridae, Synaphobranchidae and Nettastomatidae in Australasian waters. Trans Roy Soc NZ 5:131–146

    Google Scholar 

  • Castle PHJ (1970) Distribution, larval growth, and metamorphosis of the eel Derichthys serpentinus Gill, 1884 (Pisces, Derichthyidae). Copeia 1970:444–452

    Article  Google Scholar 

  • Caron DA, Countway PD, Jones AC, Kim DY, Schnetzer A (2012) Marine protistan diversity. Ann Rev Mar Sci 4:467–493

    Article  PubMed  Google Scholar 

  • Carré C (1967) Le développment of larvaire d’Ambylopsis tetragona Otto 1823 (Siphonophore, Calcophore, Abbylidae). Cahiers de Biol Mar, Tome VIII:185–193

  • Carré C, Carré D (1991) A complete life cycle of the calycophoran siphonophore Muggiaea kochi (Will) in the laboratory, under different temperature conditions: ecological implications. Philos Trans R Soc Lond B 334:27–32

    Article  Google Scholar 

  • Castillo CE, Gapasin RS, Leaño EM (2009) Enrichment potential of HUFA-rich thraustochytrid Schizochytrium mangrovei for the rotifer Brachionus plicatilis. Aquaculture 293:57–61

    Article  CAS  Google Scholar 

  • Castonguay M, McCleave JD (1987) Vertical distributions, diel and ontogenetic vertical migrations and net avoidance of leptocephali of Anguilla and other common species in the Sargasso Sea. J Plankt Res 9:195–214

    Article  Google Scholar 

  • Chang KJL, Paul H, Nichols PD (2015) Australian thraustochytrids: potential production of dietary long-chain omega-3 oils using crude glycerol. J Funct Foods 19:810–820

    Article  CAS  Google Scholar 

  • Chow S, Kurogi H, Watanabe S, Matsunari H, Sudo R, Nomura K, Tanaka H, Furuita H, Nishimoto A, Higuchi M, Jinbo T, Tomoda T (2017) Onboard rearing attempts for the Japanese eel leptocephali using POM-enriched water collected in the western North Pacific. Aquat Living Resour 30:38

    Article  CAS  Google Scholar 

  • Chow S, Inaba N, Nagai S, Kurogi H, Nakamura Y, Yanagimoto T, Tanaka H, Hasegawa D, Asakura T, Kikuchi J, Tomoda T, Kodama T (2019) Molecular diet analysis of Anguilliformes leptocephalus larvae collected in the western North Pacific. PLoS ONE 14(11):e0225610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colin SP, Costello JH (2007) Functional characteristics of nematocysts found on the scyphomedusa Cyanea capillata. J Exp Mar Biol Ecol 351:114–120

    Article  Google Scholar 

  • Collado-Mercado E, Radway JC, Collier JL (2010) Novel uncultivated labyrinthulomycetes revealed by 18S rDNA sequences from seawater and sediment samples. Aquat Microb Ecol 58:215–228

    Article  Google Scholar 

  • Corrales-Ugalde M, Colin SP, Southerland KR (2017) Nematocyst distribution corresponds to prey capture location in hydromedusae with different predation modes. Mar Ecol Prog Ser 568:101–110

    Article  Google Scholar 

  • Damare V, Raghukumar S (2006) Morphology and physiology of the marine straminipilan fungi, the aplanochytrids isolated from the equatorial Indian Ocean. Ind J Mar Sci 35:326–340

    Google Scholar 

  • Damare V, Raghukumar S (2008) Abundance of thraustochytrids and bacteria in the equatorial Indian Ocean, in relation to transparent exopolymeric particles (TEPs). FEMS Microbiol Ecol 65:40–49

    Article  CAS  PubMed  Google Scholar 

  • Damare V, Raghukumar S (2012) Marine aggregates and transparent exopolymeric particles (TEPs) as substrates for the stramenopilan fungi, the thraustochytrids: Roller table experimental approach. KAVAKA 40:22–31

    Google Scholar 

  • Damare VS, Damare S, Ramanujam P, Meena RM, Raghukumar S (2013) Preliminary studies on the association between zooplankton and the stramenopilan fungi, aplanochytrids. Microb Ecol 65:955–963

    Article  CAS  PubMed  Google Scholar 

  • Dawson SC, Pace NR (2002) Novel kingdom-level eukaryotic diversity in anoxic environments. Proc Nat Acad Sci USA 99:8324–8329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deibel D, Parrish CC, Grønkjaer P, Munk P, Nielsen TG (2012) Lipid class and fatty acid content of the leptocephalus larva of tropical eels. Lipids 47:623–634

    Article  CAS  PubMed  Google Scholar 

  • Dilling L, Brezenzinski MZ (2004) Quantifying marine snow as a food choice for zooplankton using stable silicon isotope tracers. J Plankt Res 26:1105–1114

    Article  CAS  Google Scholar 

  • Dilling L, Wilson J, Steinberg D, Alldredge AL (1998) Feeding by the euphausiid, Euphausia pacifica, and the copepod, Calanus pacificus, on marine snow. Mar Ecol Prog Ser 170:189–201

    Article  Google Scholar 

  • Dunn CW (2005) Complex colony-level organization of the deep-sea siphonophore Bargmannia elongate (Cnidaria, Hydrozoa) is directionally asymmetric and arises by the subdivision of pro-buds. Develop Dyn 234:835–845

    Article  Google Scholar 

  • Dunn CW, Wagner GP (2006) The evolution of colony-level development in the Siphonophora (Cnidaria: Hydrozoa). Devel Genes Evol 216:743–775

    Article  Google Scholar 

  • Feunteun E, Miller MJ, Carpentier A, Aoyama J, Dupuy C, Kuroki M, Pagano M, Réveillac E, Sellos D, Watanabe S, Tsukamoto K, Otake T (2015) Stable isotopic composition of anguilliform leptocephali and other food web components from west of the Mascarene Plateau. Progr Oceanogr 137:69–83

    Article  Google Scholar 

  • Francis WR, Christianson LM, Kiko R, Powers ML, Shaner NC, Haddock SHD (2013) A comparison across non-model animals suggests an optimal sequencing depth for de novo transcriptome assembly. BMC Genomics 14:167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman G (1983) Experimental studies on embryogenesis in hydrozoans (Trachylina and Siphonophora) with direct development. Biol Bull 165:591–618

    Article  PubMed  Google Scholar 

  • Friedland KD, Miller MJ, Knights B (2007) Oceanic changes in the Sargasso Sea and declines in recruitment of the European eel. ICES J Mar Sci 64:519–530

    Article  Google Scholar 

  • Galluzzi L, Bertozzini E, Penna A, Perini F, Garcés E, Magnani M (2010) Analysis of rRNA gene content in the Mediterranean dinoflagellate Alexandrium catenella and Alexandrium taylori: implications for the quantitative realtime PCR-based monitoring methods. J Appl Phycol 22:1–9

    Article  CAS  Google Scholar 

  • Girard YA, Johnson CK, Fritz HM, Shapiro K, Packham AE, Melli AC, Carlson-Bremer D, Gulland FM, Rejmanek AE, Conrad PA (2016) Detection and characterization of diverse coccidian protozoa shed by California sea lions. Internat J Parasitol Parasites Wildl 5:5–16

    Article  Google Scholar 

  • Gibbons JG, Branco AT, Yu S, Lemos B (2014) Ribosomal DNA copy number is coupled with gene expression variation and mitochondrial abundance in humans. Nature Commun 5:4850

    Article  CAS  Google Scholar 

  • Ghinter L, Dupuy C, Miller MJ, Carpentier A, Lefrançois C, Acou A, Aoyama J, Kuroki M, Liénart C, Watanabe S, Tsukamoto K, Otake T, Feunteun E (2020) Microbial functional structure and stable isotopic variation of leptocephali across three current zones in the western South Pacific. Progr Oceanogr 182:102264

    Article  Google Scholar 

  • Govoni J (2010) Feeding on protists and particulates by the leptocephali of the worm eels Myrophis spp. (Teleostei, Anguilliformes, Ophichthidae), and the potential energy contribution of large aloricate protozoa. Sci Marina 74:339–344

    Article  Google Scholar 

  • Grossman MM, Collins AG, Lindsay DJ (2014) Description of the eudoxid stages of Lensia havock and Lensia leloupi (Cnidaria: Siphonophora: Calycophorae), with a review of all known Lensia eudoxid bracts. Syst Biodivers 12:163–180

    Article  Google Scholar 

  • Gupta A, Wilkens S, Adcock J, Puri M, Barrow CJ (2012) Pollen baiting facilitates the isolation of marine thraustochytrids with potential in omega-3 and biodiesel production. J Indian Microbiol Biotechnol 40:1231–1240

    Article  CAS  Google Scholar 

  • Haddock SHD, Dunn CD, Pugh PR (2005) A re-examination of siphonophore terminology and morphology, applied to the description of two new prayine species with remarkable bio-optical properties. J Mar Biol Assoc UK 85:695–707

    Article  Google Scholar 

  • Hamamoto Y, Honda D (2019) Nutritional intake of Aplanochytrium (Labyrinthulea, Stramenopiles) from living diatoms revealed by culture experiments suggesting the new prey–predator interactions in the grazing food web of the marine ecosystem. PLoS ONE 14(1):e0208941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen JLS, Kiørboe T, Alldredge AL (1996) Marine snow derived from abandoned larvacean houses: sinking rates, particle content and mechanisms of aggregate formation. Mar Ecol Prog Ser 141:205–215

    Article  Google Scholar 

  • Herrera ML, Vallor AC, Gelfond JA, Patterson PF, Wickes BL (2009) Strain-dependent variation in 18S ribosomal DNA copy numbers in Aspergillus fumigatus. J Clin Microbiol 47:1325–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirai J, Hamamoto Y, Honda D, Hidaka K (2018) Possible aplanochytrid (Labyrinthulea) prey detected using 18S metagenetic diet analysis in the key copepod species Calanus sinicus in the coastal waters of the subtropical western North Pacific. Plankt Benth Res 13:75–82

    Article  Google Scholar 

  • Honda D, Yokochi T, Nakahara T, Raghukumar S, Nakagiri A, Schaumann K, Higashihara T (1999) Molecular phylogeny of labyrinthulids and thraustochytrids based on the sequence of 18S ribosomal RNA gene. J Eukar Microbiol 46:637–647

    Article  CAS  Google Scholar 

  • Jacoby D, Casselman J, Crook V, DeLucia M, Ahn H, Kaifu K, Kurwie T, Sasal P, Silfergrip A, Smith K, Uchida K, Walker AM, Gollock MJ (2015) Synergistic patterns of threat and the challenges facing global anguillid eel conservation. Glob Ecol Conserv 4:321–333

    Article  Google Scholar 

  • Jain R, Raghukumar S, Tharanathan R, Bhosle NB (2005) Extracellular polysaccharide production by thraustochytrid protists. Mar Biotechnol 7:184–192

    Article  CAS  Google Scholar 

  • Kass-Simon G, Scappaticci AA Jr (2002) The behavioral and developmental physiology of nematocysts. Can J Zool 80:1772–1794

    Article  Google Scholar 

  • Kembel SW, Wu M, Eisen JA, Green JL (2012) Incorporating 16S gene copy number information improves estimates of Microbial diversity and abundance. PLoS Comput Biol 8(10):e1002743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura H, Fukuba T, Naganuma T (1999) Biomass of thraustochytrid protoctists in coastal water. Mar Ecol Progr Ser 189:27–33

    Article  CAS  Google Scholar 

  • Kimura H, Sato M, Sugiyama C, Naganuma T (2001) Coupling of thraustochytrids and POM, and of bacterio- and phytoplankton in a semi-enclosed coastal area: implication for different substrate preference by the planktonic decomposers. Aquat Microb Ecol 25:293–300

    Article  Google Scholar 

  • Kiørboe T (2000) Colonization of marine snow aggregates by invertebrate zooplankton: abundance, scaling, and possible role. Limnol Oceanogr 45:479–484

    Article  Google Scholar 

  • Leander CL, Porter D, Leander BS (2004) Comparative morphology and molecular phylogeny of aplanochytrids (Labyrinthulomycota). Europ J Protistol 40:317–328

    Article  Google Scholar 

  • Leclère L, Copley RR, Momose T, Houliston E (2016) Hydrozoan insights in animal development and evolution. Curr Opin Genet Devel 39:157–167

    Article  CAS  Google Scholar 

  • Leclère L, Röttinger E (2017) Diversity of cnidarian muscles: function, anatomy, development and regeneration. Front Cell Develop Biol 4:157

    Article  Google Scholar 

  • Leonard G, Labarre A, Milner DS, Monier A, Soanes D, Wideman JG, Maguire F et al (2018) Comparative genomic analysis of the ‘pseudofungus’ Hyphochytrium catenoides. Open Biol 8:170184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liénart C, Feunteun E, Miller MJ, Aoyama J, Mortillaro J-M, Hubas C, Kuroki M, Watanabe S, Dupuy C, Carpentier A, Otake T, Tsukamoto K, Meziane T (2016) Geographic analyses of stable isotopic and fatty acid composition of three families of anguilliform leptocephali in the western South Pacific. Mar Ecol Prog Ser 544:225–241

    Article  CAS  Google Scholar 

  • Li Q, Wang X, Liu X, Jiao N, Wang G (2013) Abundance and novel lineages of thraustochytrids in Hawaiian waters. Microb Ecol 66:823–830

    Article  PubMed  Google Scholar 

  • Liu Y, Singh P, Sun Y, Luan S, Wang G (2014) Culturable diversity and biochemical features of thraustochytrids from coastal waters of southern China. Environ Biotechnol 98:3214–3255

    Google Scholar 

  • Lo W, Biggs DC (1996) Temporal variability in the night-time distribution of epipelagic siphonophores in the North Atlantic Ocean at Bermuda. J Plankt Res 18:923–939

    Article  Google Scholar 

  • López-García P, Rodríguez-Valera F, Pedrós-Alió C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607

    Article  PubMed  Google Scholar 

  • Lovy J, Friend SE (2015) Intestinal coccidiosis of anadromous and landlocked alewives, Alosa pseudoharengus, caused by Goussia ameliae n. sp. and G. alosii n. sp. (Apicomplexa: Eimeriidae). Internat J Parasitol: Parasites Wildlife 4:159–170

    Google Scholar 

  • Louca S, Doebeli M, Parfrey LW (2018) Correcting for 16S rRNA gene copy numbers in microbiome surveys remains an unsolved problem. Microbiome 6:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Lundgreen RBC, Jaspers C, Traving S, Ayala DJ, Lombard F, Grossart H-S, Nielsen TG, Munk P, Riemann L (2019) Eukaryotic and cyanobacterial communities associated with marine snow particles in the oligotrophic Sargasso Sea. Sci Rep 8:8891

    Article  CAS  Google Scholar 

  • Lüskow F, Neitzel P, Miller MJ, Jaspers C, Marohn L, Wysujack K, Freese M, Pohlmann JD, Hanel R (2019) Distribution and abundance of net-captured calycophoran siphonophores and other gelatinous zooplankton in the Sargasso Sea European eel spawning area. Mar Biodiv 49:2333–2349

    Article  Google Scholar 

  • Lyons MM, Ward JE, Smolowitz R, Uhlinger KR, Gast RJ (2005) Lethal marine snow: pathogen of bivalve mollusc concealed in marine aggregates. Limnol Oceanogr 50:1983–1988

    Article  Google Scholar 

  • MacIntyre S, Alldredge AL, Gotschalk CC (1995) Accumulation of marine snow at density discontinuities in the water column. Limnol Oceanogr 40:449–468

    Article  Google Scholar 

  • Mackie GO, Boag DA (1963) Fishing, feeding and digestion in siphonophores. Pubbl staz zool Napoli 33:178–196

    Google Scholar 

  • Mackie GO, Pugh PR, Purcell JE (1987) Siphonophore biology. Adv Mar Biol 24:97–262

    Article  Google Scholar 

  • Manikan V, Nazir MYM, Kalil MS, Isa MHM, Kader AJA, Yusoff WMW, Hamid AA (2015) A new strain of docosahexaenoic acid producing microalga from Malaysian coastal waters. Algal Res 9:40–47

    Article  Google Scholar 

  • Mapstone GM (2014) Global diversity and review of siphonophorae (Cnidaria: Hydrozoa). PLoS One 9(2):e87737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marchan LF, Lee Chang KJ, Nichols PD, Mitchell WJ, Polglase JL, Gutierreza T (2018) Taxonomy, ecology and biotechnological applications of thraustochytrids: a review. Biotechnol Adv 36:26–46

    Article  CAS  Google Scholar 

  • Mari X, Passow U, Migon C, Burd AB, Legendre L (2017) Transparent exopolymer particles: effects on carbon cycling in the ocean. Prog Oceanogr 151:13–37

    Article  Google Scholar 

  • Miller MJ (2009) Ecology of anguilliform leptocephali: remarkable transparent fish larvae of the ocean surface layer. Aqua BioSci Monogr 2:1–94

    Article  Google Scholar 

  • Miller MJ (2015) Nighttime vertical distribution and regional species composition of eel larvae in the western Sargasso Sea. Reg Stud Mar Sci 1:34–46

    Article  Google Scholar 

  • Miller MJ, Tsukamoto K (2017) The ecology of oceanic dispersal and survival of anguillid leptocephali. Can J Fish Aquat Sci 74:958–971

    Article  CAS  Google Scholar 

  • Miller MJ, Otake T, Aoyama J, Wouthuyzen S, Suharti S, Sugeha HY, Tsukamoto K (2011) Observations of gut contents of leptocephali in the North Equatorial Current and Tomini Bay, Indonesia. Coastal Mar Sci 35:277–288

    Google Scholar 

  • Miller MJ, Chikaraishi Y, Ogawa NO, Yamada Y, Tsukamoto K, Ohkouchi N (2013) A low trophic position of Japanese eel larvae indicates feeding on marine snow. Biol Lett 9:20120826

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller MJ, Bonhommeau S, Munk P, Castonguay M, Hanel R, McCleave JD (2015) A century of research on the larval distributions of the Atlantic eels: a reexamination of the data. Biol Rev 90:1035–1064

    Article  PubMed  Google Scholar 

  • Miller MJ, Feunteun E, Tsukamoto K (2016) Did a “perfect storm” of oceanic changes and continental anthropogenic impacts cause Northern Hemisphere anguillid recruitment reductions? ICES J Mar Sci 73:43–56

    Article  Google Scholar 

  • Miller MJ, Marohn L, Wysujack K, Freese M, Pohlmann J-D, Westerberg H, Tsukamoto K, Hanel R (2019) Morphology and gut contents of anguillid and marine eel larvae in the Sargasso Sea. Zoolog Anzeig 279:138–151

    Article  Google Scholar 

  • Miyazaki S, Kim H-Y, Zenimoto K, Kitagawa T, Miller MJ, Kimura S (2011) Stable isotope analysis of two species of anguilliform leptocephali (Anguilla japonica and Ariosoma major) relative to their feeding depth in the North Equatorial Current region. Mar Biol 158:2555–2564

    Article  CAS  Google Scholar 

  • Mochioka N, Iwamizu M (1996) Diet of anguillid larvae: leptocephali feed selectively on larvacean houses and fecal pellets. Mar Biol 125:447–452

    Article  Google Scholar 

  • Molnár K, Ostoros G, Nunams-Morel D, Rosenthal BM (2012) Eimeria that infect fish are diverse and are related to, but distinct from, those that infect terrestrial vertebrates. Infect Genet Evol 12:1810–1815

    Article  PubMed  Google Scholar 

  • Moreira D, López-García P (2002) The molecular ecology of microbial eukaryotes unveils a hidden world. Trends Microbiol 10:31–38

    Article  CAS  PubMed  Google Scholar 

  • Munk P, Nielsen TG, Jaspers C, Ayala DJ, Tang KW, Lombard F, Riemann L (2018) Vertical structure of plankton communities in areas of European eel larvae distribution in the Sargasso Sea. J Plankton Res 40:362–375

    Article  CAS  Google Scholar 

  • Naganuma T, Takasugi H, Kimura H (1998) Abundance of thraustochytrids in coastal plankton. Mar Ecol Prog Ser 162:105–110

    Article  Google Scholar 

  • Naganuma T, Kimura H, Karimoto R (2006) Abundance of planktonic thraustochytrids and bacteria and the concentration of particulate ATP in the Greenland and Norwegian seas. Polar Biosci 20:37–45

    CAS  Google Scholar 

  • Nakai R, Nakamura K, Jadoon WA, Kashihara K, Naganuma T (2013) Genus-specific quantitative PCR of thraustochytrid protists. Mar Ecol Prog Ser 486:1–12

    Article  CAS  Google Scholar 

  • Nunn AD, Twson LH, Cowx IG (2012) The foraging ecology of larval and juvenile fishes. Rev Fish Biol Fisheries 22:377–408

    Article  Google Scholar 

  • Onda H, Miller MJ, Takeshige A, Miyake Y, Kuroki M, Aoyama J, Kimura S (2017) Vertical distribution and assemblage structure of leptocephali in the North Equatorial Current region of the western Pacific. Mar Ecol Prog Ser 575:119–136

    Article  Google Scholar 

  • Otake T, Nogami K, Maruyama K (1993) Dissolved and particulate organic matter as possible food sources for eel leptocephali. Mar Ecol Prog Ser 92:27–34

    Article  Google Scholar 

  • Ou M-C, Yeong H-U, Pang K-L, Phang S-M (2016) Fatty acid production of tropical thraustochytrids from Malaysian mangroves. Bot Mar 59:321–338

    Article  CAS  Google Scholar 

  • Perisin M, Vetter M, Gilbert JA, Berelson J (2016) 16Stimator: statistical estimation of ribosomal gene copy numbers from draft genome assemblies. ISME J 10:1020–1024

    Article  CAS  PubMed  Google Scholar 

  • Pesant S, Not F, Picheral M, Kandels-Lewis S, Le Bescot N, Gorsky G, Iudicone D et al (2015) Open science resources for the discovery and analysis of Tara Oceans data. Sci Data 2:150023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeiler E (1986) Towards an explanation of the developmental strategy in leptocephalus larvae of marine fishes. Environ Biol Fish 15:3–13

    Article  Google Scholar 

  • Pilskaln CH, Villareal TA, Dennett M, Darkangelo-Wood C, Meadows G (2005) High concentrations of marine snow and diatom algal mats in the North Pacific Subtropical Gyre: implications for carbon and nitrogen cycles in the oligotrophic ocean. Deep-Sea Res I 52:2315–2332

    Article  Google Scholar 

  • Polglase JL (2019) Cephalopod diseases caused by fungi and labyrinthulomycetes. In: Gestal C, Pascual S, Guerra Á, Fiorito G, Vieites J (eds) Handbook of pathogens and diseases in cephalopods. Springer, Cham

  • Pompanon F, Deagle BE, Symondson WOC, Brown DS, Jarman NJ, Taberlet P (2012) Who is eating what: diet assessment using next generation sequencing. Molec Ecol 21:1938–1950

    Article  CAS  Google Scholar 

  • Prokopowich CD, Gregory T, Crease TJ (2003) The correlation between rDNA copy number and genome size in eukaryotes. Genome 46:48–50

    Article  CAS  PubMed  Google Scholar 

  • Prudkovsky AA, Neretina TV (2016) The life cycle of Catablema vesicarium (A. Agassiz, 1862) (Hydrozoa, Pandeidae). Polar Biol 39:533–542

    Article  Google Scholar 

  • Purcell JE (1984) The functions of nematocysts in prey capture by epipelagic siphonophores (Coelenterata, Hydrozoa). Biol Bull 166:310–327

    Article  Google Scholar 

  • Quattrini AM, McClain-Counts J, Artabane SJ, Roa-Varon A, McIver TC, Rhode M, Ross SW (2019) Assemblage structure, vertical distributions, and stable isotopic compositions of anguilliform leptocephali in the Gulf of Mexico. J Fish Biol 94:621–647

    Article  CAS  PubMed  Google Scholar 

  • Raghukumar S (1992) Bacterivory: a novel dual role for thraustochytrids in the sea. Marine Biol 113:165–169

    Article  Google Scholar 

  • Raghukumar S (2002) Ecology of the marine protists, the labyrinthulomycetes (thraustochytrids and labyrinthulids). Eur J Protistol 38:127–145

    Article  Google Scholar 

  • Raghukumar S, Shaumann K (1993) An epifluorescence microscopy method for direct detection and enumeration of the thraustochytrids. Limnol Oceanogr 38:182–187

    Article  Google Scholar 

  • Raghukumar S, Damare VS (2011) Increasing evidence for the important role of Labyrinthulomycetes in marine ecosystems. Botanica Mar 54:3–11

    Article  Google Scholar 

  • Raghukumar S, Ramaiah N, Raghukumar C (2001) Dynamics of thraustochytrid protists in the water column of the Arabian Sea. Aquat Microb Ecol 24:175–186

    Article  Google Scholar 

  • Richards TA, Leonard G, Mahé F, del Campo J, Romac S, Jones MDM, Maguire F, Dunthorn M, De Vargas C, Massana R, Chambouvet A (2015) Molecular diversity and distribution of marine fungi across 130 European environmental samples. Proc R Soc B 282:20152243

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Richardson K, Bendtsen J, Christensen JT, Adjou M, Lynsgaard MM, Hilligsøe KM, Pedersen J, Torben V, Nielsen MH (2014) Localised mixing and heterogeneity in the plankton food web in a frontal region of the Sargasso Sea: implications for eel early life history. Mar Ecol Prog Ser 504:91–107

    Article  Google Scholar 

  • Riemann L, Alfredsson H, Hansen MM, Als TD, Nielsen TG, Munk P, Aarestrup K, Maes GE, Sparholt H, Petersen MI, Bachler M, Castonguay M (2010) Qualitative assessment of the diet of European eel larvae in the Sargasso Sea resolved by DNA barcoding. Biol Lett 6:819–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riemann L, Nielsen TG, Kragh T, Richardson K, Parner H, Jakobsen HH, Munk P (2011) Distribution and production of plankton communities in the subtropical convergence zone of the Sargasso Sea. I. Phytoplankton and bacterioplankton. Mar Ecol Prog Ser 426:57–70

    Article  Google Scholar 

  • Rønnestad I, Yúfera M, Ueberschär B, Ribeiro L, Sæle Ø, Boglione C (2013) Feeding behaviour and digestive physiology in larval fish: current knowledge, and gaps and bottlenecks in research. Rev Aquacult 5(Suppl 1):S59–S98

    Article  Google Scholar 

  • Rosenthal BM, Dunams-Morel OG, Molnár K (2016) Coccidian parasites of fish encompass profound phylogenetic diversity and gave rise to each of the major parasitic groups in terrestrial vertebrates. Infect Genet Evol 40:219–227

    Article  PubMed  Google Scholar 

  • Sanders SM, Shcheglovitova M, Cartwright P (2014) Differential gene expression between functionally specialized polyps of the colonial hydrozoan Hydractinia symbiolongicarpus (Phylum Cnidaria). BMC Genom 15:406

    Article  Google Scholar 

  • Schärer L, Knoflach D, Vizoso DB, Rieger G, Peintner U (2007) Thraustochytrids as novel parasitic protists of marine free-living flatworms: Thraustochytrium caudivorum sp. nov. parasitizers Macrostomum lignano. Mar Biol 152:1095–1104

    Article  Google Scholar 

  • Schirrmeister BE, Dalquen DA, Animismova M, Bagheri H (2012) Gene copy number variation and its significance in cyanobacterial phylogeny. BMC Microbiol 12:177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt J (1916) On the early larval stages of the fresh-water eels (Anguilla) and some other North Atlantic muraenoids. Meddel Kommiss Havuners Bind V Nr:4

  • Schmidt J (1935) Danish eel investigations during 25 years, 1905–1930. Carlsberg Foundation, Copenhagen

    Google Scholar 

  • Shanks AL, Walters K (1997) Holoplankton, meroplankton, and meiofauna associated with marine snow. Mar Ecol Prog Ser 156:75–86

    Article  Google Scholar 

  • Sherlock RE, Robison BE (2000) Effects of temperature on the development and survival of Nanomia bijuga (Hydrozoa, Siphonophora). Invert Biol 119:379–385

    Article  Google Scholar 

  • Siebert S, Juliano CE (2017) Sex, polyps, and medusae: determination and maintenance of sex in cnidarians. Mol Reprod Devel 84:105–119

    Article  CAS  PubMed  Google Scholar 

  • Siebert S, Robinson MD, Tintori SC, Goetz F, Helm RR, Smith SA, Shaner N et al (2011) Differential gene expression in the siphonophore Nanomia bijuga (Cnidaria) assessed with multiple next-generation sequencing workflows. PLoS One 6(7):e22953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siebert S, Goetz FE, Church SH, Bhattacharyya P, Zapata F, Haddock SHD (2015) Stem cells in Nanomia bijuga (Siphonophora), a colonial animal with localized growth zones. EvoDevo 6:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Simpson AGB, Slamovits CH, Archibald JM (2017) Protist diversity and eukaryote phylogeny. In: Archibald J, Simpson A, Slamovits C (eds) Handbook of the Protists. Springer, Cham, pp 1–21

    Google Scholar 

  • Singh P, Liu Y, Li L, Wang G (2014) Ecological dynamics and biotechnological implications of thraustochytrids from marine habitats. Appl Microbiol Biotechnol 98:5789–5805

    Article  CAS  PubMed  Google Scholar 

  • Sitjà-Bobadilla A, Palenzuela O (1996) Light microscopic description of Eimeria sparis sp. nov. and Goussia sparis sp. nov. (Protozoa: Apicomplexa) from Sparus aurata L. (Pisces: Teleostei). Parasitol Res 82:323–332

    Article  PubMed  Google Scholar 

  • Skoog A, Alldredge A, Passow U, Dunne J, Murray J (2008) Neutral aldoses as source indicators for marine snow. Mar Chem 108:195–206

    Article  CAS  Google Scholar 

  • Smith DG (1989) Introduction to leptocephali. In: Böhlke EB (ed) Fishes of the western North Atlantic. Memoir: Sears Foundation for Marine Research, Part 9, vol 2, pp 657–668

  • Steinberg DK, Carlson CA, Bates NR, Johnson RJ, Michaels AF, Knap AH (2001) Overview of the US JGOFS Bermuda Atlantic Time-series study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res Part II 48:1405–1447

    Article  CAS  Google Scholar 

  • Stoeck T, Taylor GT, Epstein SS (2003) Novel eukaryotes from the permanently anoxic Cariaco Basin (Caribbean Sea). Appl Environ Microbiol 69:5656–5663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stokes NA, Calvo LMR, Reece KS, Burreson EM (2002) Molecular diagnostics, field validation, and phylogenetic analysis of quahog parasite unknown (QPX), a pathogen of the hard clam Mercenaria mercenaria. Dis Aquat Org 52:233–247

    Article  CAS  Google Scholar 

  • Sullivan BK, Sherman TD, Damare VS, Lilje OL, Gleason FH (2013) Potential roles of Labyrinthula spp. in global seagrass population declines. Fungal Ecol 6:328–338

    Article  Google Scholar 

  • Taguchi S (1982) Seasonal study of fecal pellets and discarded houses of appendicularia in a subtropical inlet, Kaneohe Bay. Hawaii Estuar Coast Shelf Sci 14:545–555

    Article  CAS  Google Scholar 

  • Tanaka H, Kagawa H, Ohta H, Okuzawa K, Hirose K (1995) The first report of eel larvae ingesting rotifers. Fish Sci 61:171–172

    Article  CAS  Google Scholar 

  • Tanaka H, Kagawa H, Ohta H (2001) Production of leptocephali of Japanese eel (Anguilla japonica) in captivity. Aquaculture 201:51–60

    Article  Google Scholar 

  • Taoka Y, Nagano N, Ogita Y, Izumita H, Sugimoto S, Hayashi M (2009) Extracellular enzymes produced by marine eukaryotes, thraustochytrids. Biosci Biotechnol Biochem 73:180–182

    Article  CAS  PubMed  Google Scholar 

  • Terahara T, Chow S, Kurogi H, Lee S-H, Tsukamoto K, Mochioka N, Tanaka H, Takeyama H (2011) Efficiency of peptide nucleic acid-directed PCR clamping and its application in the investigation of natural diets of the Japanese eel leptocephali. PLoS One 6:e25715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiele S, Fuchs BM, Amann R, Iversen MH (2015) Colonization in the photic zone and subsequent changes during sinking determine bacterial community composition in marine snow. Appl Eviron Microbiol 81:1463–1471

    Article  CAS  Google Scholar 

  • Tomoda T, Kurogi H, Okauchi M, Kamoshida M, Imaizumi H, Jinbo T, Nomura K, Furuita H, Tanaka H (2015) Hatchery-reared Japanese eel Anguilla japonica larvae ingest various organic matters formed part of marine snow. Nippon Suisan Gakk 81:715–721 (in Japanese with English abstract)

    Article  Google Scholar 

  • Tomoda T, Chow S, Kurogi H, Okazaki M, Ambe D, Furuita H, Matsunari H, Nagai S, Yokouchi K, Nomura K, Tanaka H, Hasegawa D, Inaba N (2018) Observations of gut contents of anguilliform leptocephali collected in the western North Pacific. Nippon Suisan Gakkaishi 84:32–44 (in Japanese with English abstract)

    Article  Google Scholar 

  • Ueda M, Nomura Y, Doi K, Nakajima M, Honda D (2015) Seasonal dynamics of culturable thraustochytrids (Labyrinthulomycetes, Stramenopiles) in estuarine and coastal waters. Aquat Microb Ecol 74:187–204

    Article  Google Scholar 

  • de Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, Enrique L et al (2015) Eukaryotic plankton diversity in the sunlit ocean. Science 348:1261605

    Article  PubMed  CAS  Google Scholar 

  • Westerberg H (1990) A proposal regarding the source of nutrition of leptocephalus larvae. Internat Revue ges Hydrobiol 75:863–864

    Article  Google Scholar 

  • Westerberg H, Miller MJ, Wysujack K, Marohn L, Freese M, Pohlmann J-D, Watanabe S, Tsukamoto K, Hanel R (2018) Larval abundance across the European eel spawning area: an analysis of recent and historic data. Fish Fisheries 19:890–902

    Article  Google Scholar 

  • White MM, McLaren IA (2000) Copepod development rates in relation to genome size and 18S rDNA copy number. Genome 43:750–755

    Article  CAS  PubMed  Google Scholar 

  • Yanagihara AA, Kuroiwa JMY, Oliver M, Kunkel DD (2002) The ultrastructure of nematocysts from the fishing tentacle of the Hawaiian bluebottle, Physalia utriculus (Cnidaria, Hydrozoa, Siphonophora). Hydrobiologia 489:139–150

    Article  Google Scholar 

  • Yokoyama R, Salleh B, Honda D (2007) Taxonomic rearrangement of the genus Ulkenia sensu lato based on morphology, chemotaxonomical characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Ulkenia and erection of Botryochytrium, Parietichytrium Sicyoidochytrium gen nov. Mycoscience 48:329–341

    Article  CAS  Google Scholar 

  • Zhu F, Massana R, Not F, Marie D, Vaulot D (2005) Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol Ecol 52:79–92

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the scientists in Germany, Japan and Denmark who have conducted research cruises or studies on the gut contents of leptocephali or the biological environment of the Sargasso Sea that have contributed to the information in this review. The efforts of researchers who study siphonophores and thraustochytrid protists are also acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

MJM developed the review concept and conducted the literature research, RH and KT led research cruises that provided information about the gut contents of leptocephali, EF led research efforts on the stable isotopic compositions of leptocephali, other food web components and POM, and authors critically revised the review.

Corresponding author

Correspondence to Michael J. Miller.

Ethics declarations

Conflict of interests

The authors declare they have no conflict of interests.

Additional information

Responsible Editor: S. Shumway.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewed by undisclosed experts.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Video: Video recording of amorphous materials as they flowed out of the intestine of a 19.0 mm Anguilla anguilla that are seen in still images in Figure 4 just prior to recording the video. Many small round objects and a piece of apparent exoskeletal material can be seen. The video was recorded on 8 April 2015 during a research cruise in the Sargasso Sea (see Miller et al. 2019) (MP4 21705 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, M.J., Hanel, R., Feunteun, E. et al. The food source of Sargasso Sea leptocephali. Mar Biol 167, 57 (2020). https://doi.org/10.1007/s00227-020-3662-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-020-3662-6

Navigation