Skip to main content
Log in

Plasma Spraying of CaCO3 Coatings from Oyster and Mussel Shell

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The aim of this research was to establish whether the shell of green-lipped mussels and Pacific oysters could be plasma sprayed to promote and accelerate the establishment of filter feeder colonies. While CaCO3 degrades before melting under equilibrium conditions, the hypothesis considered in this work was that the high-temperature, highly nonequilibrium conditions experienced by powders during plasma spraying may be sufficient to impart enough thermal energy into the powder, at a fast enough rate, that the CaCO3 phase would melt before undergoing total thermal degradation. Sprayable mussel and oyster shell powder was manufactured by crushing and milling. A range of plasma spray parameters incorporating a wide operating window of plasma power and gas velocity were trialed. Coatings were initially formed from both powders under all plasma spray conditions used. However, the samples degraded into powdery debris with time due to the reaction of CaO with water in the air to form Ca(OH)2. No evidence of CaCO3 melting was found, indicating that it was not possible to form a coating by thermal spraying. The mechanism of inflight particle phase degradation is presented for both powders, along with proposed mechanism of initial coating formation due to melting of CaO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. J. Kobak, Factors Influencing the Attachment Strength of Dreissena Polymorpha (Bivalvia), Biofouling, 2006, 22(3), p 153-162

    Article  Google Scholar 

  2. A. Pivac, Utility of bivalve aquaculture of urban environments in New Zealand (Masters Thesis), The University of Auckland, 2016

  3. M.K. La Peyre, K. Serra, T.A. Joyner, and A. Humphries, Assessing Shoreline Exposure and Oyster Habitat Suitability Maximizes Potential Success for Sustainable Shoreline Protection Using Restored Oyster Reefs, PeerJ, 2015, 2015(10), p e1317

    Article  Google Scholar 

  4. E.M.A. Strain, C. Olabarria, M. Mayer-Pinto, V. Cumbo, R.L. Morris, A.B. Bugnot, K.A. Dafforn, E. Heery, L.B. Firth, P.R. Brooks, and M.J. Bishop, Eco-Engineering Urban Infrastructure for Marine and Coastal Biodiversity: Which Interventions Have the Greatest Ecological Benefit?, J. Appl. Ecol., 2018, 55(1), p 426-441

    Article  Google Scholar 

  5. D. Parsons, Green-Lipped Mussels and the Hauraki Gulf, Retrieved from: http://temp.aucklandcouncil.govt.nz/EN/AboutCouncil/representativesbodies/haurakigulfforum/Documents/GreenlippedmusselsandtheHaurakiGulfDarrenParsons.pdf.

  6. S.C. Fitzer, L. Vittert, A. Bowman, N.A. Kamenos, V.R. Phoenix, and M. Cusack, Ocean Acidification and Temperature Increase Impact Mussel Shell Shape and Thickness: Problematic for Protection?, Ecol. Evol., 2015, 5(21), p 4875-4884

    Article  Google Scholar 

  7. A.G. Jeffs, R.C. Holland, S.H. Hooker, and B.J. Hayden, Overview and Bibliography of Research on the Greenshell Mussel, Perna Canaliculus, from New Zealand Waters, J. Shellfish Res., 1999, 18(2), p 347-360

    Google Scholar 

  8. H. de Paoli, J. van de Koppel, E. van der Zee, A. Kangeri, J. van Belzen, S. Holthuijsen, A. van den Berg, P. Herman, H. Olff, and T. van der Heide, Processes Limiting Mussel Bed Restoration in the Wadden-Sea, J. Sea Res., 2015, 103, p 42-49

    Article  Google Scholar 

  9. M. Wilcox and A. Jeffs, Is Attachment Substrate a Prerequisite for Mussels to Establish on Soft-Sediment Substrate?, J. Exp. Mar. Biol. Ecol., 2017, 495, p 83-88

    Article  Google Scholar 

  10. N. Aldred, L.K. Ista, M.E. Callow, J.A. Callow, G.P. Lopez, and A.S. Clare, Mussel (Mytilus edulis) Byssus Deposition in Response to Variations In Surface Wettability, J. R. Soc. Interface, 2006, 3(6), p 37-43

    Article  CAS  Google Scholar 

  11. J.R. Almeida and V. Vasconcelos, Natural Antifouling Compounds: Effectiveness in Preventing Invertebrate Settlement and Adhesion, Biotechnol. Adv., 2015, 33(3-4), p 343-357

    Article  CAS  Google Scholar 

  12. A.S. Clare, N. Aldred, Surface colonisation by marine organisms and its impact on antifouling research, in Advances in Marine Antifouling Coatings and Technologiesed, 2009, pp. 46-79

  13. S. Dobretsov, R.M.M. Abed, and C.R. Voolstra, The Effect of Surface Colour on the Formation of Marine Micro and Macrofouling Communities, Biofouling, 2013, 29(6), p 617-627

    Article  CAS  Google Scholar 

  14. E.R. Holm, G. Cannon, D. Roberts, A.R. Schmidt, J.P. Sutherland, and D. Rittschof, The Influence of Initial Surface Chemistry on Development of the Fouling Community at Beaufort, North Carolina, J. Exp. Mar. Biol. Ecol., 1997, 215(2), p 189-203

    Article  CAS  Google Scholar 

  15. M. Lejars, A. Margaillan, and C. Bressy, Fouling Release Coatings: A Nontoxic Alternative to Biocidal Antifouling Coatings, Chem. Rev., 2012, 112(8), p 4347-4390

    Article  CAS  Google Scholar 

  16. A.G. Nurioglu, A.C.C. Esteves, and G. De With, Non-Toxic, Non-Biocide-Release Antifouling Coatings Based on Molecular Structure Design for Marine Applications, J. Mater. Chem. B, 2015, 3(32), p 6547-6570

    Article  CAS  Google Scholar 

  17. L. Petrone, Molecular Surface Chemistry in Marine Bioadhesion, Adv. Colloid Interface. Sci., 2013, 195-196, p 1-18

    Article  CAS  Google Scholar 

  18. A.J. Scardino, Surface modification approaches to control marine biofouling, in Advances in Marine Antifouling Coatings and Technologiesed, 2009, pp. 664-692

  19. A.W. Decho and T. Gutierrez, Microbial Extracellular Polymeric Substances (Epss) in Ocean Systems, Front. Microbiol., 2017, 8(MAY), p 922

    Article  Google Scholar 

  20. A.M. Ganesan, The role of bacterial biofilms on the settlement and nutrition of mussel (Perna canaliculus) larvae and juveniles, Auckland University of Technology, 2012

  21. M.G. Hadfield, Biofilms and Marine Invertebrate Larvae: What Bacteria Produce That Larvae Use to Choose Settlement Sites, Ann. Rev. Marine Sci., 2011, 3, p 453-470

    Article  Google Scholar 

  22. J.L. Yang, Y.F. Li, X. Liang, X.P. Guo, D.W. Ding, D. Zhang, S. Zhou, W.Y. Bao, N. Bellou, and S. Dobretsov, Silver Nanoparticles Impact Biofilm Communities and Mussel Settlement, Sci. Rep., 2016, 6, p 37406

    Article  CAS  Google Scholar 

  23. X. Yu, W. He, H. Li, Y. Yan, and C. Lin, Larval Settlement and Metamorphosis of the Pearl Oyster Pinctada Fucata in Response to Biofilms, Aquaculture, 2010, 306(1–4), p 334-337

    Article  Google Scholar 

  24. C.S. Choi and Y.W. Kim, A Study of the Correlation Between Organic Matrices and Nanocomposite Materials in Oyster Shell Formation, Biomaterials, 2000, 21(3), p 213-222

    Article  CAS  Google Scholar 

  25. Y. Dauphin, A.D. Ball, H. Castillo-Michel, C. Chevallard, J.P. Cuif, B. Farre, S. Pouvreau, and M. Salomé, In Situ Distribution and Characterization of the Organic Content of the Oyster Shell Crassostrea gigas (Mollusca, Bivalvia), Micron, 2013, 44(1), p 373-383

    Article  CAS  Google Scholar 

  26. S. Hahn, R. Rodolfo-Metalpa, E. Griesshaber, W.W. Schmahl, D. Buhl, J.M. Hall-Spencer, C. Baggini, K.T. Fehr, and A. Immenhauser, Marine Bivalve Shell Geochemistry and Ultrastructure from Modern Low pH Environments: Environmental Effect Versus Experimental Bias, Biogeosciences, 2012, 9(5), p 1897-1914

    Article  CAS  Google Scholar 

  27. S.W. Lee, Y.N. Jang, K.W. Ryu, S.C. Chae, Y.H. Lee, and C.W. Jeon, Mechanical Characteristics and Morphological Effect of Complex Crossed Structure in Biomaterials: Fracture Mechanics and Microstructure of Chalky Layer in Oyster Shell, Micron, 2011, 42(1), p 60-70

    Article  Google Scholar 

  28. H.M. Leung and S.K. Sinha, Scratch and Indentation Tests on Seashells, Tribol. Int., 2009, 42(1), p 40-49

    Article  CAS  Google Scholar 

  29. C. Martínez-García, B. González-Fonteboa, F. Martínez-Abella, and D. Carro- López, Performance of Mussel Shell as Aggregate in Plain Concrete, Constr. Build. Mater., 2017, 139, p 570-583

    Article  Google Scholar 

  30. S.S. Xie, O. Vasylkiv, and A.I.Y. Tok, Highly Ordered Nano-Scale Structure in Nacre of Green-Lipped Mussel Perna Canaliculus, CrystEngComm, 2016, 18(39), p 7501-7505

    Article  CAS  Google Scholar 

  31. G.L. Yoon, B.T. Kim, B.O. Kim, and S.H. Han, Chemical-Mechanical Characteristics of Crushed Oyster-Shell, Waste Manag, 2003, 23(9), p 825-834

    Article  CAS  Google Scholar 

  32. D. Lide (ed.), CRC Handbook of Chemistry and Physics (86 edn), (CRC Press, 2005)

  33. S.M. Antao, The Crystal Structure of a Biogenic Aragonite from the Nacre of an Ammonite Shell, RSC Adv., 2012, 2(2), p 526-530

    Article  CAS  Google Scholar 

  34. J.C. Kim, S.W. Lee, and Y.N. Jang, Characteristics of the Aragonitic Layer in Adult Oyster Shells, crassostrea gigas: Structural Study of Myostracum Including the Adductor Muscle Scar, Evid Based Complement. Altern. Med., 2011, 2011, p 742963

    Google Scholar 

  35. M. Ni and B.D. Ratner, Differentiating Calcium Carbonate Polymorphs by Surface Analysis Techniques—An XPS and TOF-SIMS Study, Surf. Interface Anal., 2008, 40(10), p 1356-1361

    Article  CAS  Google Scholar 

  36. S.P. Thompson, J.E. Parker, and C.C. Tang, Thermal Breakdown of Calcium Carbonate and Constraints on its use as a Biomarker, Icarus, 2014, 229, p 1-10

    Article  CAS  Google Scholar 

  37. E.N. Caspi, B. Pokroy, P.L. Lee, J.P. Quintana, and E. Zolotoyabko, On the Structure of Aragonite, Acta Crystallogr. B, 2005, 61(2), p 129-132

    Article  CAS  Google Scholar 

  38. W. Yang, N. Kashani, X.W. Li, G.P. Zhang, and M.A. Meyers, Structural Characterization and Mechanical Behavior of a Bivalve Shell (Saxidomus purpuratus), Mater. Sci. Eng. C, 2011, 31(4), p 724-729

    Article  CAS  Google Scholar 

  39. J. Sun and B. Bhushan, Hierarchical Structure and Mechanical Properties of Nacre: A Review, RSC Adv., 2012, 2(20), p 7617-7632

    Article  CAS  Google Scholar 

  40. M.R. Mucalo, D.L. Foster, B. Wielage, S. Steinhaeuser, H. Mucha, D. Knighton, and J. Kirby, The Novel Use of Waste Animal Bone from New Zealand Agricultural Sources as a Feedstock for Forming Plasma Sprayed Hydroxyapatite Coatings on Biomedical Implant Materials, J. Appl. Biomater. Biomech., 2004, 2, p 96-104

    CAS  Google Scholar 

  41. L. Lutterotti, Total Pattern Fitting for the Combined Size-Stress-Texture Determination in Thin Film Diffraction, Nucl. Inst. Methods Phys. Res. B, 2010, 268, p 334-340

    Article  CAS  Google Scholar 

  42. L. Lutterotti, R. Ceccato, R. Dal Maschio, E. Pagani, Quantitative analysis of silicate glass in ceramic materials by the Rietveld method, in Materials Science Forumed, 1998, pp. 87-92

  43. L. Génio, S. Kiel, M.R. Cunha, J. Grahame, and C.T.S. Little, Shell Microstructures of Mussels (Bivalvia: Mytilidae: Bathymodiolinae) from Deep-Sea Chemosynthetic Sites: Do They Have a Phylogenetic Significance?, Deep-Sea Res. Part I: Oceanograph. Res. Pap., 2012, 64, p 86-103

    Article  Google Scholar 

  44. M. Felipe-Sesé, D. Eliche-Quesada, and F.A. Corpas-Iglesias, The Use of Solid Residues Derived from Different Industrial Activities to Obtain Calcium Silicates for Use as Insulating Construction Materials, Ceram. Int., 2011, 37(8), p 3019-3028

    Article  Google Scholar 

  45. G.T. Faust, Thermal Analysis Studies on Carbonates I. Aragonite and Calcite, Am. Mineral., 1950, 35(3-4), p 207-224

    CAS  Google Scholar 

  46. S. Yoshioka and Y. Kitano, Transformation of Aragonite to Calcite Through Heating, Geochem. J., 1985, 19(4), p 245-249

    Article  CAS  Google Scholar 

  47. F. Hamer and J Hamer, The Potter’s Dictionary of Materials and Techniques, 5th ed., University of Pennsylvania Press, Philadelphia, 2004, p 47. https://books.google.co.nz/books?id=TApnGTVLwxAC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

  48. G.H. Aylward and T.J.V. Findlay, SI, Chemical Data, 2nd ed., Wiley, New York, 1971

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of North Island Mussels Ltd (Tauranga, New Zealand) in supplying the mussel shells used in this work. The assistance of Holster Engineering (Tokoroa, New Zealand) in performing the plasma spray trials is also sincerely appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Matthews.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matthews, S., Asadov, A. Plasma Spraying of CaCO3 Coatings from Oyster and Mussel Shell. J Therm Spray Tech 29, 1144–1171 (2020). https://doi.org/10.1007/s11666-020-01024-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01024-7

Keywords

Navigation