Skip to main content
Log in

Cold-Sprayed Cu-Ni-Fe Anodes for CO2-Free Aluminum Production

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Cu-Ni-Fe-coated and bare aluminum bronze materials are evaluated as O2-evolving anodes for Al production in low-temperature (700 °C) potassium-based cryolite. The Cu-Ni-Fe coating (~ 0.8 mm thick) is obtained by cold spraying of mechanically alloyed Cu65Ni20Fe15 (wt.%) powder and presents a biphase Cu-rich/Ni-Fe-rich structure. The composition and morphology of the scale formed on both anodes are characterized after different electrolysis times (3 to 50 h). In both cases, the formed surface oxide is porous with significant electrolyte infiltration. However, for the Cu-Ni-Fe-coated anode, there is formation of an inner NiFe2O4-rich layer limiting the outward Cu diffusion at the anode surface. As a result after 50 h of electrolysis, a lower anode wear rate (0.37 versus 3.8 cm year−1) and a higher produced Al purity (98.8 versus 95.4 wt.%) are observed with the Cu-Ni-Fe-coated anode compared to the uncoated aluminum bronze anode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. The Aluminum Association, Inert Anode Roadmap: A Framework for Technology Development, The Aluminum Association, Washington, DC, 1998

    Google Scholar 

  2. I. Galasiu, R. Galasiu, and J. Thonstad, Inert Anodes for Aluminium Electrolysis, 1st ed., GmbH Aluminium-Verlag Marketing & Komuunikation, Düsseldorf, 2007

    Google Scholar 

  3. R.P. Pawlek, Inert Anodes: An Update, Light Metals, J. Grandfield, Ed., Springer, Cham, 2014, p 1309-1313

    Google Scholar 

  4. S.K. Padamata, A.S. Yasinskiy, and P.V. Polyakov, Progress of Inert Anodes in Aluminium Industry: Review, J. Sib. Fed. Univ. Chem., 2018, 1(11), p 18-30

    Google Scholar 

  5. T.R. Beck and R.J. Brooks, Electrolytic Reduction of Alumina, Electrochemical Technology Corp. & Brooks Rand Ltd., Seattle, 1991

    Google Scholar 

  6. J. Yang, D.G. Graczyk, C. Wunsch, and J.N. Hryn, Alumina Solubility in KF–AlF3-Based Low-Temperature Electrolyte System, Light Metals, M. Sorlie, Ed., Springer, Cham, 2007, p 537-541

    Google Scholar 

  7. L. Cassayre, P. Palau, P. Chamelot, and L. Massot, Properties of Low-Temperature Melting Electrolytes for the Aluminum Electrolysis Process: A Review, J. Chem. Eng. Data, 2010, 55, p 4549-4560

    Article  CAS  Google Scholar 

  8. E. Kubinakova, V. Danielik, and J. Híves, Electrical Conductivity of Low-Temperature Potassium Cryolite Electrolytes Suitable for Innovation of Aluminum Preparation, J. Electrochem. Soc., 2018, 165(7), p E274-E278

    Article  CAS  Google Scholar 

  9. J. Hryn, O. Tkacheva, and J. Spangenberger, Initial 1000A Aluminum Electrolysis Testing in Potassium Cryolite-Based Electrolyte, Light Metals, B.A. Sadler, Ed., Springer, Cham, 2013, p 1289-1294

    Google Scholar 

  10. J. Hryn, O. Tkacheva, and J. Spangenberger, Ultra-High-Efficiency Aluminum Production Cell, Argonne National Lab, Lemont, 2014

    Book  Google Scholar 

  11. J. Yang, J.N. Hryn, and G.K. Krumdick, Aluminum Electrolysis Tests with Inert Anodes in KF–AlF3-Based Electrolytes, Light Metals, T.T. Galloway, Ed., Springer, Cham, 2006, p 421-424

    Google Scholar 

  12. A. Redkin, A. Apisarov, A. Dedyukhin, V. Kovrov, Y. Zaikov, O. Tkachev, and J. Hryn, Recent Developments in Low-Temperature Electrolysis of Aluminum, ECS Trans., 2013, 50(11), p 205-213

    Article  Google Scholar 

  13. J. Yang, J.N. Hryn, B.R. Davis, A. Roy, G.K. Krumdick, and J.A. Pomykala, Jr., New Opportunities for Aluminum Electrolysis with Metal Anodes in a Low Temperature Electrolyte System, Light Metals, A.T. Tabereaux, Ed., Springer, Cham, 2004, p 321-326

    Google Scholar 

  14. S. Helle, B. Davis, D. Guay, and L. Roué, Electrolytic Production of Aluminum Using Mechanically Alloyed Cu–Al–Ni–Fe-Based Materials as Inert Anodes, J. Electrochem. Soc., 2010, 157(11), p E173-E179

    Article  CAS  Google Scholar 

  15. S. Helle, M. Pedron, B. Assouli, B. Davis, D. Guay, and L. Roué, Structure and High-Temperature Oxidation Behaviour of Cu–Ni–Fe Alloys Prepared by High-Energy Ball Milling for Application as Inert Anodes in Aluminium Electrolysis, Corr. Sci., 2010, 52, p 3348-3355

    Article  CAS  Google Scholar 

  16. S. Helle, B. Brodu, B. Davis, D. Guay, and L. Roué, Influence of the Iron Content in Cu–Ni Based Inert Anodes on Their Corrosion Resistance for Aluminium Electrolysis, Corr. Sci., 2011, 53, p 3248-3253

    Article  CAS  Google Scholar 

  17. E. Gavrilova, G. Goupil, B. Davis, D. Guay, and L. Roué, On the Key Role of Cu on the Oxidation Behavior of Cu–Ni–Fe Based Anodes for Al Electrolysis, Corr. Sci., 2015, 101, p 105-113

    Article  CAS  Google Scholar 

  18. E. Gavrilova, G. Goupil, B. Davis, D. Guay, and L. Roué, Influence of Partial Substitution of Cu by Various Elements in Cu–Ni–Fe Alloys on Their High-Temperature Oxidation Behavior, Light Metals, M. Hyland, Ed., Springer, Cham, 2015, p 1187-1191

    Google Scholar 

  19. G. Goupil, S. Helle, B. Davis, D. Guay, and L. Roué, Anodic Behavior of Mechanically Alloyed Cu–Ni–Fe and Cu–Ni–Fe–O Electrodes for Aluminum Electrolysis in Low-Temperature KF–AlF3 Electrolyte, Electrochim. Acta, 2013, 112, p 176-182

    Article  CAS  Google Scholar 

  20. S. Helle, M. Tresse, B. Davis, D. Guay, and L. Roué, Mechanically Alloyed Cu–Ni–Fe–O Based Materials as Oxygen-Evolving Anodes for Aluminum Electrolysis, J. Electrochem. Soc., 2012, 159(4), p E62-E68

    Article  CAS  Google Scholar 

  21. K.P. Gupta, S.B. Rajendraprasad, and A.K. Jena, The Copper–Iron–Nickel System, J. Alloy Phase Diagrams, 1987, 3(2), p 116-127

    CAS  Google Scholar 

  22. C.P. Wang, X.J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida, Thermodynamic Database of the Phase Diagrams in Cu–Fe Base Ternary Systems, J. Phase Equilib. Diff., 2004, 25(4), p 320-328

    Article  Google Scholar 

  23. T.R. Beck, C.M. MacRae, and N.C. Wilson, Metal Anode Performance in Low-Temperature Electrolytes for Aluminum Production, Metall. Mater. Trans. B, 2011, 42B, p 807-813

    Article  Google Scholar 

  24. I. Gallino, M.E. Kassner, and R. Busch, Oxidation and Corrosion of Highly Alloyed Cu–Fe–Ni as Inert Anode Material for Aluminum Electrowinning in As-cast and Homogenized Conditions, Corr. Sci., 2012, 63, p 293-303

    Article  CAS  Google Scholar 

  25. G. Goupil, G. Bonnefont, H. Idrissi, D. Guay, and L. Roué, Consolidation of Mechanically Alloyed Cu–Ni–Fe Material by Spark Plasma Sintering and Evaluation as Inert Anode for Aluminum Electrolysis, J. Alloys Compd., 2013, 580, p 256-261

    Article  CAS  Google Scholar 

  26. A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, and V.M. Fomin, Cold Spray Technology, Elsevier, Amsterdam, 2006

    Google Scholar 

  27. G. Goupil, S. Helle, E. Irissou, D. Poirier, J.G. Legoux, D. Guay, and L. Roué, Cold Spray Deposition of Mechanically Alloyed Cu–Ni–Fe Material for Application as Inert Anodes for Aluminum Production, Light Metals, B.A. Sadler, Ed., Springer, Cham, 2013, p 1283-1287

    Google Scholar 

  28. G. Goupil, S. Jucken, D. Poirier, J.G. Legoux, E. Irissou, B. Davis, D. Guay, and L. Roué, Cold-Sprayed Cu–Ni–Fe Anode for Aluminum Electrolysis, Corr. Sci., 2015, 90, p 259-265

    Article  CAS  Google Scholar 

  29. M. Sherif El-Eskandarany, Mechanical Alloying: Nanotechnology, Materials Science and Powder Metallurgy, 2nd ed., William Andrew, Norwich, 2015

    Google Scholar 

  30. I. Gallino, Phase Diagram, Thermal Stability, and High Temperature Oxidation of the Ternary Cu-Ni-Fe System, PhD thesis, Oregon State University, 2003

  31. O.-A. Lorentsen, Behaviour of Nickel, Iron and Copper by Application of Inert Anodes in Aluminium Production, PhD thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2000

  32. M.L. Narula, V.B. Tare, and W.L. Worrell, Diffusivity and Solubility of Oxygen in Solid Copper Using Potentiostatic and Potentiometric Techniques, Metall. Trans. B, 1983, 14B, p 673-677

    Article  CAS  Google Scholar 

  33. S.N.S. Reddy and R.A. Rapp, The Solubility and Diffusivity of Fluorine in Solid Copper from Electrochemical Measurements, Metall. Trans. B, 1978, 9, p 559-565

    Article  Google Scholar 

  34. J. Crank, The Mathematics of Diffusion, 2nd ed., Clarendon Press, Oxford, 1975

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) (Grants STPGP 430569—2012 and STPGP 494283—2016), Kingston Process Metallurgy Inc and Metal7 Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Roué.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jucken, S., Martin, M.H., Irissou, E. et al. Cold-Sprayed Cu-Ni-Fe Anodes for CO2-Free Aluminum Production. J Therm Spray Tech 29, 670–683 (2020). https://doi.org/10.1007/s11666-020-01002-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01002-z

Keywords

Navigation