Skip to main content
Log in

Finite Element Analysis of Interface Undulation and Interface Delamination in the MCrAlY Coating System Under Thermal Cycling: Considering Oxide Thickness and Top-Coat Effects

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Thermal cycling is able to cause interface undulation and interface delamination in the MCrAlY coating system. A generalized plane strain finite element model was built in this work to analyze interface undulation and interface delamination. Increasing thermally grown oxide (TGO) thickness facilitates interface undulation. The possible reason for this is that increase in TGO thickness causes the TGO film to be subjected to larger bending moments. Nonetheless, interface undulation can be suppressed in the case of the existence of the top-coat. Simultaneously, the incorporation of the top-coat leads to an obvious reduction in the maximum tensile stresses within the bond-coat/TGO interface. Furthermore, whether the top-coat is incorporated into the coating system model or not, the bond-coat/TGO interface is subjected to compressive stresses, at its concave region and tensile stresses, at its convex region. Therefore, the convex region is thought to be the most likely place where cracks nucleate at the bond-coat/TGO interface. Additionally, the TGO thickness has a significant influence on the in-plane strain energy stored within the TGO film, and the in-plane strain energy is also thought to be one of the mechanisms for the interface delamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. J. Rösler, M. Bäker, and M. Volgmann, Stress State and Failure Mechanisms of Thermal Barrier Coatings: Role of Creep in Thermally Grown Oxide, Acta Mater., 2001, 49(49), p 3659-3670

    Article  Google Scholar 

  2. L. Cen, W.Y. Qin, and Q.M. Yu, Analysis of Interface Delamination in Thermal Barrier Coating System with Axisymmetric Structure Based on Corresponding Normal and Tangential Stresses, Surf. Coat. Technol., 2019, 358, p 785-795

    Article  CAS  Google Scholar 

  3. M.P. Taylor, R.D. Jackson, and H.E. Evans, The Effect of Bond Coat Oxidation on the Microstructure and Endurance of a Thermal Barrier Coating System, Mater. High Temp., 2009, 26(3), p 317-323

    Article  CAS  Google Scholar 

  4. D.R. Clarke and C.G. Levi, Materials Design for the Next Generation Thermal Barrier Coatings, Annu. Rev. Mater. Res., 2003, 33(1), p 383-417

    Article  CAS  Google Scholar 

  5. Y. Chen, X. Zhao, M. Bai, L. Yang, C. Li, L. Wang, J.A. Carr, and P. Xiao, A Mechanistic Understanding on Rumpling of a NiCoCrAlY Bond Coat for Thermal Barrier Coating Applications, Acta Mater., 2017, 128, p 31-42

    Article  CAS  Google Scholar 

  6. V.K. Tolpygo and D.R. Clarke, Surface Rumpling of a (Ni, Pt)Al Bond Coat Induced by Cyclic Oxidation, Acta Mater., 2000, 48(13), p 3283-3293

    Article  CAS  Google Scholar 

  7. S. Ahmadian and E.H. Jordan, Explanation of the Effect of Rapid Cycling on Oxidation, Rumpling, Microcracking and Lifetime of Air Plasma Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 2014, 244(15), p 109-116

    Article  CAS  Google Scholar 

  8. A.W. Davis and A.G. Evans, A Protocol for Validating Models of the Cyclic Undulation of Thermally Grown Oxides, Acta Mater., 2005, 53(7), p 1895-1905

    Article  CAS  Google Scholar 

  9. N.R. Rebollo, M.Y. He, C.G. Levi, and A.G. Evans, Mechanisms Governing the Distortion of Alumina-Forming Alloys Upon Cyclic Oxidation, Z. Metallkd., 2003, 94(3), p 171-179

    Article  CAS  Google Scholar 

  10. L. Cen, W.Y. Qin, and Q.M. Yu, On the Role of TGO Growth in the Interface Undulation in MCrAlY Coating System Upon Thermal Cycling, Ceram. Int., 2019, 45(17), p 22802-22812

    Article  CAS  Google Scholar 

  11. J. Shi, S. Darzens, A.M. Karlsson, The effect of thermal mismatch on stresses, morphology and failures in thermal barrier coatings, in 28th International Conference on Advanced Ceramics and Composites B: Ceramic Engineering and Science Proceedings, ed. by E. Lara-Curzio, M. J. Readey (Wiley-American Ceramic Society), p. 345–350

  12. J. Shi, S. Darzens, and A.M. Karlsson, Aspects of the Morphological Evolution in Thermal Barrier Coatings and the Intrinsic Thermal Mismatch Therein, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2005, 392(1–2), p 301-312

    Article  CAS  Google Scholar 

  13. A.M. Karlsson and A.G. Evans, A Numerical Model for the Cyclic Instability of Thermally Grown Oxides in Thermal Barrier Systems, Acta Mater., 2001, 49(10), p 1793-1804

    Article  CAS  Google Scholar 

  14. A.W. Davis and A.G. Evans, Effects of Bond Coat Misfit Strains on the Rumpling of Thermally Grown Oxides, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2006, 37A(7), p 2085-2095

    Article  CAS  Google Scholar 

  15. A.M. Karlsson, C.G. Levi, and A.G. Evans, A Model Study of Displacement Instabilities During Cyclic Oxidation, Acta Mater., 2002, 50(6), p 1263-1273

    Article  CAS  Google Scholar 

  16. D.R. Mumm, A.G. Evans, and I.T. Spitsberg, Characterization of a Cyclic Displacement Instability for a Thermally Grown Oxide in a Thermal Barrier System, Acta Mater., 2001, 49(12), p 2329-2340

    Article  CAS  Google Scholar 

  17. A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, and F.S. Pettit, Mechanisms Controlling the Durability of Thermal Barrier Coatings, Prog. Mater Sci., 2001, 46(5), p 505-553

    Article  Google Scholar 

  18. S. Darzens and A.M. Karlsson, On the Microstructural Development in Platinum-Modified Nickel-Aluminide Bond Coats, Surf. Coat. Technol., 2004, 177, p 108-112

    Article  CAS  Google Scholar 

  19. M. Białas, Finite Element Analysis of Stress Distribution in Thermal Barrier Coatings, Surf. Coat. Technol., 2008, 202(24), p 6002-6010

    Article  CAS  Google Scholar 

  20. P. Skalka, K. Slámečka, J. Pokluda, and L. Čelko, Finite Element Simulation of Stresses in a Plasma-Sprayed Thermal Barrier Coating with a Crack at the TGO/Bond-Coat Interface, Surf. Coat. Technol., 2018, 337, p 321-334

    Article  CAS  Google Scholar 

  21. K. Slámečka, P. Skalka, J. Pokluda, and L. Čelko, Finite Element Simulation of Stresses in a Plasma-Sprayed Thermal Barrier Coating with an Irregular Top-Coat/Bond-Coat Interface, Surf. Coat. Technol., 2016, 304, p 574-583

    Article  CAS  Google Scholar 

  22. K.W. Schlichting, N.P. Padture, E.H. Jordan, and M. Gell, Failure Modes in Plasma-Sprayed Thermal Barrier Coatings, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2003, 342(1–2), p 120-130

    Article  Google Scholar 

  23. A. Rabiei and A.G. Evans, Failure Mechanisms Associated with the Thermally Grown Oxide in Plasma-Sprayed Thermal Barrier Coatings, Acta Mater., 2000, 48(15), p 3963-3976

    Article  CAS  Google Scholar 

  24. M. Ranjbar-Far, J. Absi, G. Mariaux, and F. Dubois, Simulation of the Effect of Material Properties and Interface Roughness on the Stress Distribution in Thermal Barrier Coatings Using Finite Element Method, Mater. Des., 2010, 31(2), p 772-781

    Article  CAS  Google Scholar 

  25. E.P. Busso and Z.Q. Qian, A Mechanistic Study of Microcracking in Transversely Isotropic Ceramic–Metal Systems, Acta Mater., 2006, 54(2), p 325-338

    Article  CAS  Google Scholar 

  26. X. Fan, R. Xu, and T.J. Wang, Interfacial Delamination of Double-Ceramic-Layer Thermal Barrier Coating System, Ceram. Int., 2014, 40(9), p 13793-13802

    Article  CAS  Google Scholar 

  27. E.P. Busso, H.E. Evans, Z.Q. Qian, and M.P. Taylor, Effects of Breakaway Oxidation on Local Stresses in Thermal Barrier Coatings, Acta Mater., 2010, 58(4), p 1242-1251

    Article  CAS  Google Scholar 

  28. Q.M. Yu and L. Cen, Residual Stress Distribution Along Interfaces in Thermal Barrier Coating System Under Thermal Cycles, Ceram. Int., 2017, 43(3), p 3089-3100

    Article  CAS  Google Scholar 

  29. X. Zhao, X. Wang, and P. Xiao, Sintering and Failure Behaviour of EB-PVD Thermal Barrier Coating After Isothermal Treatment, Surf. Coat. Technol., 2006, 200(20–21), p 5946-5955

    Article  CAS  Google Scholar 

  30. J.W. Hutchinson and Z. Suo, Mixed-Mode Cracking in Layered Materials, Adv. Appl. Mech., 1992, 29(08), p 63-191

    Google Scholar 

  31. H.E. Evans, Oxidation Failure of TBC Systems: An Assessment of Mechanisms, Surf. Coat. Technol., 2011, 206(7), p 1512-1521

    Article  CAS  Google Scholar 

  32. H.E. Evans and M.P. Taylor, Delamination Processes in Thermal Barrier Coating Systems, J. Corros. Sci. Eng., 2003, 6, p 1-28

    Google Scholar 

  33. V. Maurel, E.P. Busso, J. Frachon, J. Besson, and F. N’Guyen, A Methodology to Model the Complex Morphology of Rough Interfaces, Int. J. Solids Struct., 2014, 51(19–20), p 3293-3302

    Article  Google Scholar 

  34. M. Baeker, Finite Element Simulation of Interface Cracks in Thermal Barrier Coatings, Comput. Mater. Sci., 2012, 64(3), p 79-83

    Article  CAS  Google Scholar 

  35. J. Cheng, E.H. Jordan, B. Barber, and M. Gell, Thermal/Residual Stress in an Electron Beam Physical Vapor Deposited Thermal Barrier Coating System, Acta Mater., 1998, 46(16), p 5839-5850

    Article  CAS  Google Scholar 

  36. P. Bednarz, Finite Element Simulation of Stress Evolution in Thermal Barrier Coating Systems. Doctor Thesis, Rwth Aachen (2007). http://publications.rwth-aachen.de/record/61550/files/Bednarz_Piotr

  37. W.G. Xie, E. Jordan, and M. Gell, Stress and Cracking Behavior of Plasma Sprayed Thermal Barrier Coatings Using an advanced Constitutive Model, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2006, 419(1–2), p 50-58

    Article  CAS  Google Scholar 

  38. M.Y. He, J.W. Hutchinson, and A.G. Evans, Simulation of Stresses and Delamination in a Plasma-Sprayed Thermal Barrier System Upon Thermal Cycling, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2003, 345(1–2), p 172-178

    Article  Google Scholar 

  39. M. Jinnestrand and S. Sjöström, Investigation by 3D FE Simulations of Delamination Crack Initiation in TBC Caused by Alumina Growth, Surf. Coat. Technol., 2001, 135(2), p 188-195

    Article  CAS  Google Scholar 

  40. M. Abbas, H. Guo, and M.R. Shahid, Comparative Study on Effect of Oxide Thickness On Stress Distribution of Traditional and Nanostructured Zirconia Coating Systems, Ceram. Int., 2013, 39(1), p 475-481

    Article  CAS  Google Scholar 

  41. A. Liu and Y. Wei, Finite Element Analysis of Anti-Spallation Thermal Barrier Coatings, Surf. Coat. Technol., 2003, 165(2), p 154-162

    Article  CAS  Google Scholar 

  42. ABAQUS Version 6.11 Documentation, Dassault Systemes Simulia Corp. (2011)

  43. Q.M. Yu, H.L. Zhou, and L.B. Wang, Influences of Interface Morphology and Thermally Grown Oxide Thickness on Residual Stress Distribution in Thermal Barrier Coating System, Ceram. Int., 2016, 42(7), p 8338-8350

    Article  CAS  Google Scholar 

  44. S. Zheng, Improvements and Verification of an Accelerated Technique for Simulations of Cyclically Loaded Structures, University of Delaware, Newark, 2013

    Google Scholar 

  45. Z.Y. Wei, H.N. Cai, R.X. Feng, and J.Y. Su, Dynamic Crack Growth Mechanism and Lifetime Assessment in Plasma Sprayed Thermal Barrier System Upon Temperature Cycling, Ceram. Int., 2019, 45(12), p 14896-14907

    Article  CAS  Google Scholar 

  46. Q.M. Yu, L. Cen, and Y. Wang, Numerical Study of Residual Stress and Crack Nucleation in Thermal Barrier Coating System with Plane Model, Ceram. Int., 2018, 44(5), p 5116-5123

    Article  CAS  Google Scholar 

  47. M. Ranjbar-Far, J. Absi, S. Shahidi, and G. Mariaux, Impact of the Non-homogenous Temperature Distribution and the Coatings Process Modeling on the Thermal Barrier Coatings System, Mater. Des., 2011, 32(2), p 728-735

    Article  CAS  Google Scholar 

  48. J. Rösler, M. Bäker, and K. Aufzug, A Parametric Study of the Stress State of Thermal Barrier Coatings: Part I: Creep Relaxation, Acta Mater., 2004, 52(16), p 4809-4817

    Google Scholar 

  49. A.M. Karlsson, Modeling Failures of Thermal Barrier Coatings, Key Eng. Mater., 2007, 333, p 155-166

    Article  CAS  Google Scholar 

  50. A.M. Karlsson, J.W. Hutchinson, and A.G. Evans, The Displacement of the Thermally Grown Oxide in Thermal Barrier Systems Upon Temperature Cycling, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2003, 351(1–2), p 244-257

    Article  CAS  Google Scholar 

  51. C.H. Hsueh and E.R. Fuller, Residual Stresses in Thermal Barrier Coatings: Effects of Interface Asperity Curvature/Height and Oxide Thickness, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2000, 283(1–2), p 46-55

    Article  Google Scholar 

  52. X.Y. Gong and D.R. Clarke, On the Measurement of Strain in Coatings Formed on a Wrinkled Elastic Substrate, Oxid. Met., 1998, 50(5–6), p 355-376

    Article  CAS  Google Scholar 

  53. X.C. Zhang, B.S. Xu, H.D. Wang, and Y.X. Wu, Effects of Oxide Thickness, Al2O3 Interlayer and Interface Asperity on Residual Stresses in Thermal Barrier Coatings, Mater. Des., 2006, 27(10), p 989-996

    Article  CAS  Google Scholar 

  54. P.K. Wright and A.G. Evans, Mechanisms Governing the Performance of Thermal Barrier Coatings, Curr. Opin. Solid State Mater. Sci., 1999, 4(3), p 255-265

    Article  CAS  Google Scholar 

  55. K.L. Luthra and C.L. Briant, Mechanism of Adhesion of Alumina on MCrAlY Alloys, Oxid. Met., 1986, 26, p 397-416

    Article  CAS  Google Scholar 

  56. M. Ranjbar-Far, J. Absi, G. Mariaux, and D.S. Smith, Crack Propagation Modeling on the Interfaces of Thermal Barrier Coating System with Different Thickness of the Oxide Layer and Different Interface Morphologies, Mater. Des., 2011, 32(10), p 4961-4969

    Article  CAS  Google Scholar 

  57. R. Panat, K.J. Hsia, and J. Oldham, Rumpling Instability in Thermal Barrier Systems Under Isothermal Conditions in Vacuum, Philos. Mag., 2005, 85(1), p 45-64

    Article  CAS  Google Scholar 

  58. S. Widjaja, A.M. Limarga, and T.H. Yip, Modeling of Residual Stresses in a Plasma-Sprayed Zirconia/Alumina Functionally Graded-Thermal Barrier Coating, Thin Solid Films, 2003, 434(1–2), p 216-227

    Article  CAS  Google Scholar 

  59. P. Niranatlumpong, C.B. Ponton, and H.E. Evans, The Failure of Protective Oxides on Plasma-Sprayed NiCrAlY Overlay Coatings, Oxid. Met., 2000, 53(3–4), p 241-258

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11872308) and the Fundamental Research Funds for the Central Universities (Grant Nos. 3102017JC01003, 3102017JC11001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Cen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cen, L., Qin, W.Y. & Yu, Q.M. Finite Element Analysis of Interface Undulation and Interface Delamination in the MCrAlY Coating System Under Thermal Cycling: Considering Oxide Thickness and Top-Coat Effects. J Therm Spray Tech 29, 597–610 (2020). https://doi.org/10.1007/s11666-020-01007-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01007-8

Keywords

Navigation