Skip to main content
Log in

Hybrid Additive Manufacturing Technology: Induction Heating Cold Spray—Part I: Fundamentals of Deposition Process

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The prevention of delamination of soft and ductile materials from hard substrates is a challenge when using the cold spray process. As a potential solution to this issue, a tunable hybrid additive manufacturing process was developed by coupling induction heating and cold spray processes. Pure aluminum was used as the soft feedstock powder, while Ti-6Al-4V was used for the hard substrate. The effects of induction heating and of the substrate initial temperature on the deposition process were evaluated. Single-particle impact tests suggested metallic bond formation at the particle/substrate region as the bonding mechanism. Deposition efficiency, coating thickness and porosity levels were evaluated to characterize the induction heating and initial substrate temperature effects. The deposition efficiency and the coating thickness were doubled with the hybrid additive manufacturing process compared to the traditional cold spray process. Moreover, the presence of eddy currents in the coating (in situ induction heating of the coating) was confirmed by an electromagnetic analysis which modeled the interaction between the coating and the electromagnetic field. Findings demonstrated that substrate preheating has little influence on the overall deposition process and coating quality compared to in situ induction heating effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.N. Papyrin, V.K. Kosarev, S. Klinkov, A. Alkimov, and V. Fomin, Cold Spray Technology, 1st ed., A.N. Papyrin, Ed., Elsevier, Oxford, 2007,

    Google Scholar 

  2. A. Moridi, S.M. Hassani-Gangaraj, M. Guagliano, and M. Dao, Cold Spray Coating: Review of Material Systems and Future Perspectives, Surf. Eng., 2014, 30(6), p 369-395

    CAS  Google Scholar 

  3. J. Villafuerte, Ed., Modern Cold Spray: Materials, Process, and Applications, Springer, Cham, 2015

    Google Scholar 

  4. J.R. Davis, Ed., Handbook of Thermal Spray Technology, 1st ed., ASM International, Cleveland, 2004

    Google Scholar 

  5. K.R. Ernst, J. Braeutigam, F. Gaertner, and T. Klassen, Effect of Substrate Temperature on Cold-Gas-Sprayed Coatings on Ceramic Substrates, J. Therm. Spray Technol., 2013, 22(2-3), p 422-432

    CAS  Google Scholar 

  6. W. Sun, A.W.Y. Tan, A. Bhowmik, I. Marinescu, X. Song, W. Zhai, F. Li, and E. Liu, Deposition Characteristics of Cold Sprayed Inconel 718 Particles on Inconel 718 Substrates with Different Surface Conditions, Mater. Sci. Eng. A, 2018, 720, p 75-84

    CAS  Google Scholar 

  7. S. Yin, X. Suo, Y. Xie, W. Li, R. Lupoi, and H. Liao, Effect of Substrate Temperature on Interfacial Bonding for Cold Spray of Ni onto Cu, J. Mater. Sci., 2015, 50(22), p 7448-7457

    CAS  Google Scholar 

  8. S. Yin, X. Suo, Z. Guo, H. Liao, and X. Wang, Deposition Features of Cold Sprayed Copper Particles on Preheated Substrate, Surf. Coat. Technol., 2015, 268, p 252-256

    CAS  Google Scholar 

  9. M. Bray, A. Cockburn, and W. O’Neill, The Laser-Assisted Cold Spray Process and Deposit Characterisation, Surf. Coat. Technol., 2009, 203(19), p 2851-2857

    CAS  Google Scholar 

  10. J. Yao, L. Yang, B. Li, and Z. Li, Beneficial Effects of Laser Irradiation on the Deposition Process of Diamond/Ni60 Composite Coating with Cold Spray, Appl. Surf. Sci., 2015, 330, p 300-308

    CAS  Google Scholar 

  11. M. Kulmala and P. Vuoristo, Influence of Process Conditions in Laser-Assisted Low-Pressure Cold Spraying, Surf. Coat. Technol., 2008, 202(18), p 4503-4508

    CAS  Google Scholar 

  12. D.K. Christoulis, S. Guetta, E. Irissou, V. Guipont, M.H. Berger, M. Jeandin, J.G. Legoux, C. Moreau, S. Costil, M. Boustie, Y. Ichikawa, and K. Ogawa, Cold-Spraying Coupled to Nano-Pulsed Nd-YaG Laser Surface Pre-treatment, J. Therm. Spray Technol., 2010, 19(5), p 1062-1073

    CAS  Google Scholar 

  13. Y. Watanabe, C. Yoshida, K. Atsumi, M. Yamada, and M. Fukumoto, Influence of Substrate Temperature on Adhesion Strength of Cold-Sprayed Coatings, J. Therm. Spray Technol., 2014, 24(1-2), p 86-91

    Google Scholar 

  14. A. List, F. Gärtner, T. Schmidt, and T. Klassen, Impact Conditions for Cold Spraying of Hard Metallic Glasses, J. Therm. Spray Technol., 2012, 21(3-4), p 531-540

    CAS  Google Scholar 

  15. C. Legoux, J.G. Irissou, and E. Moreau, Effect of Substrate Temperature on the Formation Mechanism of Cold-Sprayed Aluminum, Zinc and Tin Coatings, J. Therm. Spray Technol., 2007, 16(5-6), p 619-626

    CAS  Google Scholar 

  16. Y. Xie, M.P. Planche, R. Raoelison, H. Liao, X. Suo, and P. Hervé, Effect of Substrate Preheating on Adhesive Strength of SS 316L Cold Spray Coatings, J. Therm. Spray Technol., 2016, 25(1-2), p 123-130

    CAS  Google Scholar 

  17. X.K. Suo, M. Yu, W.Y. Li, M.P. Planche, and H.L. Liao, Effect of Substrate Preheating on Bonding Strength of Cold-Sprayed Mg Coatings, J. Therm. Spray Technol., 2012, 21(5), p 1091-1098

    CAS  Google Scholar 

  18. Z. Arabgol, M. Villa Vidaller, H. Assadi, F. Gartner, and T. Klassen, Influence of Thermal Properties and Temperature of Substrate on the Quality of Cold-Sprayed Deposits, Acta Mater., 2017, 127, p 287-301

    CAS  Google Scholar 

  19. V. Rudnev, D. Loveless, and R.L. Cook, Handbook of Induction Heating, 2nd ed., CRC Press, Boca Raton, 2017

    Google Scholar 

  20. R.E. Haimbaugh, Practical Induction Heat Treating, 1st ed., ASM International, Cleveland, 2001

    Google Scholar 

  21. W.Y. Li, C. Zhang, C.J. Li, and H. Liao, Modeling Aspects of High Velocity Impact of Particles in Cold Spraying by Explicit Finite Element Analysis, J. Therm. Spray Technol., 2009, 18(5-6), p 921

    CAS  Google Scholar 

  22. W.Y. Li, H. Liao, C.J. Li, G. Li, C. Coddet, and X. Wang, On High Velocity Impact of Micro-Sized Metallic Particles in Cold Spraying, Appl. Surf. Sci., 2006, 253(5), p 2852-2862

    CAS  Google Scholar 

  23. T. Hussain, D.G. McCartney, P.H. Shipway, and D. Zhang, Bonding Mechanisms in Cold Spraying: The Contributions of Metallurgical and Mechanical Components, J. Therm. Spray Technol., 2009, 18(3), p 364-379

    CAS  Google Scholar 

  24. T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54(3), p 729-742

    CAS  Google Scholar 

  25. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394

    CAS  Google Scholar 

  26. A. Nastic, M. Vijay, A. Tieu, S. Rahmati, and B. Jodoin, Experimental and Numerical Study of the Influence of Substrate Surface Preparation on Adhesion Mechanisms of Aluminum Cold Spray Coatings on 300 M Steel Substrates, J. Therm. Spray Technol., 2017, 26(7), p 1461-1483

    CAS  Google Scholar 

  27. G.R. Johnson and W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates, and High Temperatures, 7th Int. Symp. Ballist., 1983, 21, p 541-547

    Google Scholar 

  28. G.R. Johnson and W.H. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fract. Mech., 1985, 21(1), p 31-48

    Google Scholar 

  29. F.P. Incropera, A.S. Lavine, T.L. Bergman, and D.P. DeWitt, Fundamentals of Heat and Mass Transfer, 2nd ed., Wiley, New York, 2007

    Google Scholar 

  30. W.D. Callister, Fundamentals of Materials Science and Engineering, 5th ed., Wiley, New York, 2001

    Google Scholar 

  31. D. Steinberg, Equation of State and Strength Properties of Selected Materials, Lawrence Livermore National Laboratory, Livermore, 1996

    Google Scholar 

  32. W.J. Zhang, B.V. Reddy, and S.C. Deevi, Physical Properties of TiAl-Base Alloys, Scr. Mater., 2001, 45(6), p 645-651

    CAS  Google Scholar 

  33. J.D. Jackson, Classical Electrodynamics, 3rd ed., Wiley, New York, 1999

    Google Scholar 

  34. K.H. Kim, W. Li, and X. Guo, Detection of Oxygen at the Interface and Its Effect on Strain, Stress, and Temperature at the Interface Between Cold Sprayed Aluminum and Steel Substrate, Appl. Surf. Sci., 2015, 357(B), p 1720-1726

    CAS  Google Scholar 

  35. Y. Cormier, P. Dupuis, B. Jodoin, and A. Ghaei, Finite Element Analysis and Failure Mode Characterization of Pyramidal Fin Arrays Produced by Masked Cold Gas Dynamic Spray, J. Therm. Spray Technol., 2015, 24(8), p 1549-1565

    CAS  Google Scholar 

  36. M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, and D. Helfritch, Computational Analysis of the Interfacial Bonding Between Feed-Powder Particles and the Substrate in the COld-Gas Dynamic-Spray Process, Appl. Surf. Sci., 2003, 219(3-4), p 211-227

    CAS  Google Scholar 

  37. D.L. Gilmore, R.C. Dykhuizen, R.A. Neiser, T.J. Roemer, and M.F. Smith, Particle Velocity and Deposition Efficiency in the Cold Spray Process, J. Therm. Spray Technol., 1999, 8(4), p 576-582

    CAS  Google Scholar 

  38. F. Raletz, M. Vardelle, and G. Ezo’o, Critical Particle Velocity Under Cold Spray Conditions, Surf. Coatings Technol., 2006, 201(5), p 1942-1947

    CAS  Google Scholar 

  39. T. Schmidt, H. Assadi, F. Gärtner, H. Richter, T. Stoltenhoff, H. Kreye, and T. Klassen, From Particle Acceleration to Impact and Bonding in Cold Spraying, J. Therm. Spray Technol., 2009, 18(5-6), p 794-808

    Google Scholar 

  40. M. Grujicic, C.L. Zhao, C. Tong, W.S. DeRosset, and D. Helfritch, Analysis of the Impact Velocity of Powder Particles in the Cold-Gas Dynamic-Spray Process, Mater. Sci. Eng. A, 2004, 368(1-2), p 222-230

    Google Scholar 

  41. X.J. Ning, J.H. Jang, and H.J. Kim, The Effects of Powder Properties on In-Flight Particle Velocity and Deposition Process During Low Pressure Cold Spray Process, Appl. Surf. Sci., 2007, 253(18), p 7449-7455

    CAS  Google Scholar 

  42. C.J. Li, W.Y. Li, and H. Liao, Examination of the Critical Velocity for Deposition of Particles in Cold Spraying, J. Therm. Spray Technol., 2006, 15(2), p 212-222

    CAS  Google Scholar 

  43. B. Jodoin, L. Ajdelsztajn, E. Sansoucy, A. Zúñiga, P. Richer, and E.J. Lavernia, Effect of Particle Size, Morphology, and Hardness on Cold Gas Dynamic Sprayed Aluminum Alloy Coatings, Surf. Coatings Technol., 2006, 201(6), p 3422-3429

    CAS  Google Scholar 

  44. C. Li, S. He, Y. Fan, H. Engelhardt, S. Jia, W. Xuan, X. Li, Y. Zhong, and Z. Ren, Enhanced Diffusivity in Ni-Al System by Alternating Magnetic Field, Appl. Phys. Lett., 2017, 110(7), p 074102

    Google Scholar 

  45. H. Assadi, T. Schmidt, H. Richter, J.O. Kliemann, K. Binder, F. Gärtner, T. Klassen, and H. Kreye, On Parameter Selection in Cold Spraying, J. Therm. Spray Technol., 2011, 20(6), p 1161-1176

    CAS  Google Scholar 

  46. Q. Bai, J. Lin, T.A. Dean, D.S. Balint, T. Gao, and Z. Zhang, Modelling of Dominant Softening Mechanisms for Ti-6Al-4V in Steady State Hot Forming Conditions, Mater. Sci. Eng. A, 2013, 559, p 352-358

    CAS  Google Scholar 

  47. W.-S. Lee and C.-F. Lin, Plastic Deformation and Fracture Behaviour of Ti-6Al-4V Alloy Loaded with High Strain Rate Under Various Temperatures, Mater. Sci. Eng. A, 1998, 241(1-2), p 48-59

    Google Scholar 

  48. N. Kotkunde, A.D. Deole, A.K. Gupta, and S.K. Singh, Comparative Study of Constitutive Modeling for Ti-6Al-4V Alloy at Low Strain Rates and Elevated Temperatures, Mater. Des., 2014, 55, p 999-1005

    CAS  Google Scholar 

  49. W.S. Lee and M.T. Lin, The Effects of Strain Rate and Temperature on the Compressive Deformation Behaviour of Ti-6Al-4V Alloy, J. Mater. Process. Technol., 1997, 71(2), p 235-246

    Google Scholar 

  50. V.F. Kosarev, S.V. Klinkov, A.P. Alkhimov, and A.N. Papyrin, On Some Aspects of Gas Dynamics of the Cold Spray Process, J. Therm. Spray Technol., 2003, 12(2), p 265-281

    Google Scholar 

  51. S. Yin, M. Meyer, W. Li, H. Liao, and R. Lupoi, Gas Flow, Particle Acceleration, and Heat Transfer in Cold Spray: A Review, J. Therm. Spray Technol., 2016, 25(5), p 847-896

    Google Scholar 

  52. J. Pattison, S. Celotto, A. Khan, and W. O’Neill, Standoff Distance and Bow Shock Phenomena in the Cold Spray Process, Surf. Coatings Technol., 2008, 202(8), p 1443-1454

    CAS  Google Scholar 

  53. R.C. Dykhuizen and M.F. Smith, Gas Dynamic Principles of Cold Spray, J. Therm. Spray Technol., 1998, 7(2), p 205-212

    CAS  Google Scholar 

  54. R.K. Wangsness, Electromagnetic Fields, 2nd ed., Wiley, New York, 1979

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ortiz-Fernandez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz-Fernandez, R., Jodoin, B. Hybrid Additive Manufacturing Technology: Induction Heating Cold Spray—Part I: Fundamentals of Deposition Process. J Therm Spray Tech 29, 684–699 (2020). https://doi.org/10.1007/s11666-020-01005-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01005-w

Keywords

Navigation