Skip to main content
Log in

Evaluation of Cyclic Hot Corrosion Resistance of Plasma-Sprayed Composite Coating in Na2SO4-60%V2O5 Molten Salt Environment

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The hot corrosion resistance of air plasma-sprayed 8YSZ-Al2O3-multiwall carbon nanotubes (MWCNTs) has been analyzed and compared to that of 8YSZ coating. The feedstock constituents were blended to produce 8YSZ-20% alumina-0%MWCNT (type II), 8YSZ-19% alumina-1%MWCNT (type III), and 8YSZ-17% alumina-3%MWCNT (type IV) feedstock. After the cyclic hot corrosion (cHC) test in Na2SO4-60%V2O5 molten salt, the morphology of coatings was analyzed using EDS, SEM, and XRD while the coating cross-section properties were determined by a nanoindentation test and the infiltration resistance of the topcoats was estimated from the Weibull modulus (m) of the bond coat (BC) properties. The formation of YVO4 and phase transformation of zirconia from tetragonal to monoclinic were found as important degrading mechanisms of the coatings. The difference in coefficient of thermal expansion also proved to be detrimental to the performance of the coating. The zirconia monoclinic phase content for the 8YSZ(type I), type II, type III, and type IV coatings was around 86, 80, 92, and 89%, respectively, after the cyclic hot corrosion test. The Weibull analysis of the Young’s modulus of the bond coat showed that the type IV coating exhibited the highest heterogeneity in Young’s modulus. Finally, the addition of MWCNT was found to be detrimental in the cyclic hot corrosion test as it led to the cracking of the coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Vaßen, M.O. Jarligo, T. Steinke, D.E. Mack, and D. Stöver, Overview on Advanced Thermal Barrier Coatings, Surf. Coat. Technol., 2010, 205(4), p 938-942. https://doi.org/10.1016/j.surfcoat.2010.08.151

    Article  CAS  Google Scholar 

  2. D.R. Clarke and S.R. Phillpot, Thermal Barrier Coating Materials, Mater. Today, 2005, 8(6), p 22-29. https://doi.org/10.1016/S1369-7021(05)70934-2

    Article  CAS  Google Scholar 

  3. Z.L. Dong, K.A. Khor, and Y.W. Gu, Microstructure Formation in Plasma-Sprayed Functionally Graded NiCoCrAlY/Yttria-Stabilized Zirconia Coatings, Surf. Coat. Technol., 1999, 114(2–3), p 181-186

    Article  CAS  Google Scholar 

  4. S.V. Joshi and M.P. Srivastava, On the Thermal Cycling Life of Plasma-Sprayed Yttria-Stabilized Zirconia Coatings, Surf. Coat. Technol., 1993, 56(3), p 215-224

    Article  CAS  Google Scholar 

  5. Q.L. Ge, T.C. Lei, J.F. Mao, and Y. Zhou, In Situ Transmission Electron Microscopy Observations of the Tetragonal-to-Monoclinic Phase Transformation of Zirconia in Al2O3-ZrO2 (2 Mol % Y2O3) Composite, J. Mater. Sci. Lett., 1993, 12(11), p 819-822

    Article  CAS  Google Scholar 

  6. N.S. Jacobson, Kinetics and Mechanism of Corrosion of SiC by Molten Salts, J. Am. Ceram. Soc., 1986, 69(1), p 74-82

    Article  CAS  Google Scholar 

  7. I. Gurrappa, Thermal Barrier Coatings for Hot Corrosion Resistance of CM 247 LC Superalloy, J. Mater. Sci. Lett., 1998, 17(15), p 1267-1269

    Article  CAS  Google Scholar 

  8. S.Y. Park, J.H. Kim, M.C. Kim, H.S. Song, and C.G. Park, Microscopic Observation of Degradation Behavior in Yttria and Ceria Stabilized Zirconia Thermal Barrier Coatings under Hot Corrosion, Surf. Coat. Technol., 2005, 190(2–3), p 357-365

    Article  CAS  Google Scholar 

  9. R. Ahmadi-Pidani, R. Shoja-Razavi, R. Mozafarinia, and H. Jamali, Evaluation of Hot Corrosion Behavior of Plasma Sprayed Ceria and Yttria Stabilized Zirconia Thermal Barrier Coatings in the Presence of Na2SO4V2O5 Molten Salt, Ceram. Int., 2012, 38(8), p 6613-6620. https://doi.org/10.1016/j.ceramint.2012.05.047

    Article  CAS  Google Scholar 

  10. L. Guo, M. Li, S. He, C. Zhang, and Q. Wang, Preparation and Hot Corrosion Behavior of Plasma Sprayed Nanostructured Gd2 Zr2 O7-LaPO4 Thermal Barrier Coatings, J. Alloy. Compd., 2017, 698, p 13-19. https://doi.org/10.1016/j.jallcom.2016.12.241

    Article  CAS  Google Scholar 

  11. S.Q. Xu, C. Zhu, and Y. Zhang, Effects of Laser Remelting and Oxidation on NiCrAlY/8Y < inf > 2</Inf > O<inf > 3</Inf > -ZrO < inf > 2</Inf > Thermal Barrier Coatings, J. Therm. Spray Technol., 2018, 27(3), p 412-422

    Article  Google Scholar 

  12. R. Ghasemi, R. Shoja-Razavi, R. Mozafarinia, H. Jamali, M. Hajizadeh-Oghaz, and R. Ahmadi-Pidani, The Influence of Laser Treatment on Hot Corrosion Behavior of Plasma-Sprayed Nanostructured Yttria Stabilized Zirconia Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2014, 34(8), p 2013-2021. https://doi.org/10.1016/j.jeurceramsoc.2014.01.031

    Article  CAS  Google Scholar 

  13. A. Afrasiabi, M. Saremi, and A. Kobayashi, A Comparative Study on Hot Corrosion Resistance of Three Types of Thermal Barrier Coatings: YSZ, YSZ + Al2O3 and YSZ/Al2O3, Mater. Sci. Eng. A, 2008, 478(1–2), p 264-269

    Article  Google Scholar 

  14. S. Sharafat, A. Kobayashi, Y. Chen, and N.M. Ghoniem, Plasma Spraying of Micro-Composite Thermal Barrier Coatings, Vacuum, 2002, 65(3–4), p 415-425. https://doi.org/10.1016/S0042-207X(01)00451-1

    Article  CAS  Google Scholar 

  15. X. Zhou, J. Wang, J. Yuan, J. Sun, S. Dong, L. He, and X. Cao, Calcium-Magnesium-Alumino-Silicate Induced Degradation and Failure of La2(Zr0.7Ce0.3)2O7/YSZ Double-Ceramic–Layer Thermal Barrier Coatings Prepared by Electron Beam-Physical Vapor Deposition, J. Eur. Ceram. Soc., 2018, 38(4), p 1897-1907. https://doi.org/10.1016/j.jeurceramsoc.2017.10.057

    Article  CAS  Google Scholar 

  16. S. Nath, I. Manna, and J.D. Majumdar, Kinetics and Mechanism of Isothermal Oxidation of Compositionally Graded Yttria Stabilized Zirconia (YSZ) Based Thermal Barrier Coating, Corros. Sci., 2014, 88, p 10-22

    Article  CAS  Google Scholar 

  17. H. Vakilifard, R. Ghasemi, and M. Rahimipour, Hot Corrosion Behaviour of Plasma-Sprayed Functionally Graded Thermal Barrier Coatings in the Presence of Na2SO4 + V2O5 Molten Salt, Surf. Coat. Technol., 2017, 326, p 238-246. https://doi.org/10.1016/j.surfcoat.2017.07.058

    Article  CAS  Google Scholar 

  18. C.-H. Chen and H. Awaji, Temperature Dependence of Mechanical Properties of Aluminum Titanate Ceramics, J. Eur. Ceram. Soc., 2007, 27(1), p 13-18

    Article  Google Scholar 

  19. F. Yang, X. Zhao, and P. Xiao, Thermal Conductivities of YSZ/Al2O3 Composites, J. Eur. Ceram. Soc, 2010, 30(15), p 3111-3116. https://doi.org/10.1016/j.jeurceramsoc.2010.07.007

    Article  CAS  Google Scholar 

  20. A.K.T. Lau and D. Hui, The Revolutionary Creation of New Advanced Materials - Carbon Nanotube Composites, Compos. Part B Eng., 2002, 33(4), p 263-277

    Article  Google Scholar 

  21. ASTM International, ASTM C633 - 13 Standard Test Method for Adhesion or Cohesion Strength of Thermal Spray Coatings, 1993, 13(Reapproved 2017), p 1–8. https://doi.org/10.1520/c0633-13r17.1.

  22. S. Sharafat, A. Kobayashi, V. Ogden, and N.M. Ghoniem, Development of Composite Thermal Barrier Coatings with Anisotropic Microstructure, Vacuum, 2000, 59(1), p 185-193

    Article  CAS  Google Scholar 

  23. K. Balani, S.R. Bakshi, Y. Chen, T. Laha, and A. Agarwal, Role of Powder Treatment and Carbon Nanotube Dispersion in the Fracture Toughening of Plasma-Sprayed Aluminum Oxide-Carbon Nanotube Nanocomposite, J. Nanosci. Nanotechnol., 2007, 7(10), p 3553-3562

    Article  CAS  Google Scholar 

  24. J.G. Thakare, C. Pandey, R.S. Mulik, and M.M. Mahapatra, Mechanical Property Evaluation of Carbon Nanotubes Reinforced Plasma Sprayed YSZ-Alumina Composite Coating, Ceram. Int., 2018, 44(6), p 6980-6989. https://doi.org/10.1016/j.ceramint.2018.01.131

    Article  CAS  Google Scholar 

  25. J.G. Thakare, R.S. Mulik, and M.M. Mahapatra, Effect of Carbon Nanotubes and Aluminum Oxide on the Properties of a Plasma Sprayed Thermal Barrier Coating, Ceram. Int., 2018, 44(1), p 438-451. https://doi.org/10.1016/j.ceramint.2017.09.196

    Article  CAS  Google Scholar 

  26. K. Yang, J. Feng, X. Zhou, and S. Tao, In-Situ Formed γ-Al2O3 Nanocrystals Repaired and Toughened Al2O3 Coating Prepared by Plasma Spraying, Surf. Coat. Technol., 2012, 206(13), p 3082-3087. https://doi.org/10.1016/j.surfcoat.2011.12.014

    Article  CAS  Google Scholar 

  27. C. Batista, A. Portinha, R.M. Ribeiro, V. Teixeira, and C.R. Oliveira, Evaluation of Laser-Glazed Plasma-Sprayed Thermal Barrier Coatings Under High Temperature Exposure to Molten Salts, Surf. Coat. Technol., 2006, 200(24), p 6783-6791

    Article  CAS  Google Scholar 

  28. E. Kostic, S. Kiss, S. Boskovic, and S. Zec, Mechanical Activation of the Gamma to Alpha Transition in Al2O3, Powder Technol., 1997, 91(1), p 49-54

    Article  CAS  Google Scholar 

  29. M. Saremi, Z. Valefi, and N. Abaeian, Hot Corrosion, High Temperature Oxidation and Thermal Shock Behavior of Nanoagglomerated YSZ-Alumina Composite Coatings Produced by Plasma Spray Method, Surf. Coat. Technol., 2013, 221, p 133-141

    Article  CAS  Google Scholar 

  30. J.R. Brandon and R. Taylor, Phase Stability of Zirconia-Based Thermal Barrier Coatings Part I. Zirconia-Yttria Alloys, Surf. Coat. Technol., 1991, 46(1), p 75-90

    Article  CAS  Google Scholar 

  31. H. Toraya, M. Yoshimura, and S. Somiya, Calibration Curve for Quantitative Analysis of the Monoclinic-Tetragonal ZrO2 System by x-Ray Diffraction, J. Am. Ceram. Soc., 1984, 67(6), p C-119

    Article  CAS  Google Scholar 

  32. J.G. Thakare, R.S. Mulik, M.M. Mahapatra, and R. Upadhyaya, Hot Corrosion Behavior of Plasma Sprayed 8YSZ-Alumina- CNT Composite Coating in Na2SO4–60% V2O5 Molten Salt Environment, Ceram. Int., 2018, 10, p 10. https://doi.org/10.1016/j.ceramint.2018.08.217

    Article  CAS  Google Scholar 

  33. A.A. Abubakar, S.S. Akhtar, and A.F.M. Arif, Phase Field Modeling of V2O5 hot Corrosion Kinetics in Thermal Barrier Coatings, Comput. Mater. Sci., 2015, 99, p 105-116. https://doi.org/10.1016/j.commatsci.2014.12.004

    Article  CAS  Google Scholar 

  34. X.H. Chen, C.S. Chen, H.N. Xiao, F.Q. Cheng, G. Zhang, and G.J. Yi, Corrosion Behavior of Carbon Nanotubes-Ni Composite Coating, Surf. Coat. Technol., 2005, 191(2–3), p 351-356

    Article  CAS  Google Scholar 

  35. M. Saremi, A. Keyvani, and M. Heydarzadeh Sohi, Hot Corrosion Resistance and Mechanical Behavior of Atmospheric Plasma Sprayed Conventional and Nanostructured Zirconia Coatings, Int. J. Modern Phys. Confer. Ser., 2012, 05, p 720-727. https://doi.org/10.1142/S201019451200267X

    Article  CAS  Google Scholar 

  36. Stapelberg. R.F, Reliability and Performance in Engineering Design, in Handbook of Reliability, Availability, Maintainability and Safety in Engineering Design, 2009, p 43–294.

  37. C.K. Lin and C.C. Berndt, Statistical Analysis of Microhardness Variations in Thermal Spray Coatings, J. Mater. Sci., 1995, 30(1), p 111-117

    Article  CAS  Google Scholar 

  38. J. Zhu and K. Ma, Microstructural and Mechanical Properties of Thermal Barrier Coating at 1400 °C Treatment, Theor. Appl. Mech. Lett., 2014, 4(2), p 021008

    Article  Google Scholar 

  39. B. Siebert, C. Funke, R. Vaben, and D. Stöver, Changes in Porosity and Young’s Modulus Due to Sintering of Plasma Sprayed Thermal Barrier Coatings, J. Mater. Process. Technol., 1999, 92–93, p 217-223

    Article  Google Scholar 

  40. X.C. Zhang, B.S. Xu, Y.X. Wu, F.Z. Xuan, and S.T. Tu, Porosity, Mechanical Properties, Residual Stresses of Supersonic Plasma-Sprayed Ni-Based Alloy Coatings Prepared at Different Powder Feed Rates, Appl. Surf. Sci., 2008, 254(13), p 3879-3889

    Article  CAS  Google Scholar 

  41. B. Bergman, On the Estimation of the Weibull Modulus, J. Mater. Sci. Lett., 1984, 3(8), p 689-692

    Article  CAS  Google Scholar 

  42. S. Guo and Y. Kagawa, Effect of Thermal Exposure on Hardness and Young’s Modulus of EB-PVD Yttria-Partially-Stabilized Zirconia Thermal Barrier Coatings, Ceram. Int., 2006, 32(3), p 263-270

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Thakare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakare, J.G., Mulik, R.S. & Mahapatra, M.M. Evaluation of Cyclic Hot Corrosion Resistance of Plasma-Sprayed Composite Coating in Na2SO4-60%V2O5 Molten Salt Environment. J Therm Spray Tech 29, 811–824 (2020). https://doi.org/10.1007/s11666-020-01010-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01010-z

Keywords

Navigation