Skip to main content

Advertisement

Log in

Physicochemical and Morphological Properties of Achyranthes aspera Mediated CuO Nanoparticles for Inhibiting Cellular Adhesion

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The present study was reported with synthesize of copper oxide nanoparticles by ethno botanical species. Bio convivial and compatible approaches were made to utilize the renewable source of leaves extract of Achyranthes aspera Linn as efficient capping and stabilizing agent as well. Also, natural A. aspera was functioned as reductant in the formation of CuO NPs. The phytosynthesized CuO nanoparticles were extensively characterized by X-ray diffraction analysis, Fourier transform infrared spectroscopy, Scanning electron microscopy, Energy dispersive X-ray diffraction, High resolution tunnelling electron microscopy and also comprehensively examined their biological applications like antibacterial and antifungal susceptibility against E. lenta, E. aerogenes and C. albicans strains. An XRD result of prepared CuO nanoparticles reveals the monoclinic crystalline structure and average crystallite size of 11–16 nm. The morphology variations for different concentrations of precursor material were noticed by SEM image. Furthermore, the crystalline planes found in SAED pattern of synthesized CuO NPs were coincide to the analysed XRD spectra. In the present study, a novel green approach was used to synthesize of CuO NPs for the antibacterial activity of poorly characterized and emerging pathogens of E. lenta and E. aerogenes. Further, the physicochemical, morphological and biological properties of CuO NPs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Wang, L. Susan, Z. Yuhe, L. Ming, Z. Qian, and F. Yating (2015). J. Nanomater. 01, 11.

    Google Scholar 

  2. J. Mathew, J. Josn, and G. Soney (2018). J. King Saud Univ. Sci. 01, 09.

    Google Scholar 

  3. R. Lav Khot, S. Sindhuja, J. M. Maja, E. Reza, W. Edmund, and W. Schuster (2012). J. Crop Prot. 64, 70.

    Google Scholar 

  4. L. E. Bradley, C. Laurence, and C. Qasim (2011). Trends Food Sci. Technol. 22, 604.

    Article  CAS  Google Scholar 

  5. G. Mandal and T. Ganguly (2011). Indian J. Phys. 8, 1229.

    Article  Google Scholar 

  6. S. Guobin, S. Yan, R. D. Tyagi Rao, Y. Surampalli, Tian, and C. Zhang (2009). Pract. Period. Hazard. Toxic Radioact. Waste Manage. 13, 110.

    Article  Google Scholar 

  7. C. Aicheng and C. Sanghamitra (2013). Chem. Soc. Rev. 42, 5425.

    Article  Google Scholar 

  8. W. Xiangjian, H. Yi, and C. Yongsheng (2012). Acc. Chem. Res. 45, 598.

    Article  Google Scholar 

  9. B. Niranjan, M. Sarkar, M. Maiti, P. Nandy, R. Basu, and S. Das (2017). New J. Chem. 41, 4458.

    Article  Google Scholar 

  10. V. K. Patel (2013). J. Clust. Sci. 24, 821.

    Article  CAS  Google Scholar 

  11. V. K. Patel and S. Bhattacharya (2013). ACS Appl. Mater. Interfaces 5, 13364.

    Article  CAS  Google Scholar 

  12. A. Antony, D. Subramanian, H. Moon-Soo, and M. Y. Sun (2014). Chem. Eng. 14, 1385.

    Google Scholar 

  13. S. Jagpreet, G. Kaur, and R. Mohit (2016). J. Bioelectron. Nanotechnol. 1, 01.

    Google Scholar 

  14. A. S. Zoolfakar, R. A. Rani, A. J. Morfa, A. P. Oullaned, and K. Kourosh (2014). J. Mater. Chem. 2, 5247.

    CAS  Google Scholar 

  15. M. Jitendra, B. Amla, S. Abhijeet, and M. Mohan Sharma (2014). Adv. Nat. Sci. Nanosci. Nanotechnol. 5, 01.

    Google Scholar 

  16. V. V. Makarov, A. J. Love, O. V. Sinitsyna, S. S. Makarova, I. V. Yaminsky, M. E. Taliansky, and N. O. Kalinina (2014). Acta Nat. 6, 35.

    Article  CAS  Google Scholar 

  17. C. L. Priya, G. Kumar, L. Karthik, and K. V. Bhaskara Rao (2012). J. Agric. Sci. Tech.-Iran 8, (1), 143.

    CAS  Google Scholar 

  18. A. D. Regli and P. Marie (2015). J. Front. Microbiol. 6, 392.

    Google Scholar 

  19. M. S. Donnenberg, Enterobacteriaceae, 220.

  20. B. J. Gardiner, A. Y. Tai, D. Kotsanas, M. J. Francis, S. A. Roberts, S. A. Ballard, R. K. Junckerstorff, and T. M. Kormana (2015). J. Clin. Microbiol. 53, 626.

    Article  CAS  Google Scholar 

  21. C. W. Bok and Y. S. Ng (2009). Singap. Med. J. 12, 01.

    Google Scholar 

  22. M. R. Elias, Y. K. Shiao, J. Pupaibool, N. Ju-Hsien and W. Nathan (2012). Case Rep Med 01.

  23. M. Abdallah, C. Jacqueline, D. R. Anne, B. Jacques, and P. Jean-Marie (2006). Curr. Drug Targets 7, 843.

    Article  Google Scholar 

  24. S. Muthamil and K. P. Shunmugiah (2016). Biologia 71, 256.

    Article  CAS  Google Scholar 

  25. A. Sajjad, A. Kashif, H. Zahid, S. K. Muhammad, M. K. Wisal, W. Sher, and S. Muhammad (2017). Pure Appl. Biol. 6, 418.

    Google Scholar 

  26. W. Shibeshi, E. Makonnen, A. Debella, and L. Zerihun (2006). Pharmacology 3, 217.

    Google Scholar 

  27. V. Sharma, A. Agarwal, U. Chaudhary, and M. Singh (2013). Int. J. Pharm. Pharm. Sci. 5, 317.

    CAS  Google Scholar 

  28. M. Rai and C. Posten (2013). Emma McCann, Green biosynthesis of nanoparticles: mechanisms and applications, pp 124–129.

  29. A. Applerot, L. Jonathan, L. Anat, N. Yeshayahu, L. Rachel, G. Aharon, and B. Ehud (2012). Small 01, 13.

    Google Scholar 

  30. J. K. Sharma, M. S. Akhtar, S. Ameen, P. Srivastava, and G. Singh (2015). J. Alloys Compd. 632, 321.

    Article  CAS  Google Scholar 

  31. B. K. Sharma, D. V. Shah, and D. R. Roy (2018). Mater. Res. Express 5, 095033.

    Article  Google Scholar 

  32. P. P. N. Vijay Kumar, U. Shameem, P. Kollu, R. L. Kalyani, and S. V. N. Pammi (2015). BioNanoScience 5, 135.

    Article  Google Scholar 

  33. V. V. Thekkae Padil and M. Černik (2013). Int. J. Nanomed. 8, 889.

    Google Scholar 

  34. J. Sunita, G. Suresh, N. Madhav, and R. Anjali (2011). J. Clust. Sci. 22, 121–129.

    Article  Google Scholar 

  35. A. Azam, A. S. Ahmed, M. Oves, M. S. Khan, and A. Memic (2012). Int. J. Nanomed. 7, 6003–6009.

    Article  CAS  Google Scholar 

  36. D. Devipriya and S. Mohana Roopan (2017). Mater. Sci. Eng. C 80, 38.

    Article  CAS  Google Scholar 

  37. C. L. Santos, A. J. R. Albuquerque, F. C. Sampaio, and D. Keyson (2013). Int. J. Sci. Technol. Educ. Res. 1, 143.

    Google Scholar 

  38. K. Peter and S. Ratnasamy (2010). J. Nanosci. Nanotechnol. 10, 12.

    Google Scholar 

  39. C. Ya-Nan, Z. Mingyi, X. Lin, Z. Jun, and X. Gengmei (2012). Materials 5, 850.

    Google Scholar 

  40. W. Linlin, H. Chen, and S. Longquan (2017). Int. J. Nanomed. 12, 1227.

    Article  Google Scholar 

  41. H. T. Singh, K. Dharambir, B. S. Kaur, K. Pardeep, G. Kumar, and S. Sardul (2015). Life Sci. 15, 30047.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. R. Jayavel, Crystal Growth Centre, Anna University, Chennai, Tamil Nadu, India for enabling laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathiyanarayanamurthy Pavithra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavithra, S., Mohana, B., Mani, M. et al. Physicochemical and Morphological Properties of Achyranthes aspera Mediated CuO Nanoparticles for Inhibiting Cellular Adhesion. J Clust Sci 32, 379–389 (2021). https://doi.org/10.1007/s10876-020-01796-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01796-6

Keywords

Navigation