Skip to main content
Log in

Bacterium Mediated Facile and Green Method for Optimized Biosynthesis of Gold Nanoparticles for Simple and Visual Detection of Two Metal Ions

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The biogenic synthesis of metal nanoparticles (MNPs) is gaining impetus and widely used for being an eco-friendly approach. In this study, bacterium Pseudomonas stutzeri was demonstrated for use in the biogenic synthesis of gold nanoparticles (AuNPs). Optimization of conditions indicated that 3 mM chloroauric acid (HAuCl4), pH 9, incubation at 80 °C for 60 min, etc. were optimum for AuNPs synthesis. AuNPs were then synthesized with these optimum conditions and characterized using various spectroscopic and imaging techniques. The initial screening of 22 different metal ions for colloidal AuNPs based visual and UV–Vis. spectra based sensing indicated that two metal ion namely Manganese (Mn2+) and Platinum (Pt2+) caused both, the change in color from ruby red to dark brown and purple-blue along with spectral shifts of 23 and 21 nm respectively, therefore, could be easily detected. The test of sensitivity indicated that 100 and 190 ppm of Mn2+ and Pt2+ respectively were the limit of detections and, the assay quantitatively recovered Mn2+ and Pt2+ in the range of 70–150% with considerable accuracy and precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. N. Pantidos and L. E. Horsfall (2014). J. Nanomed. Nanotechnol. 5, 233–242. https://doi.org/10.4172/2157-7439.1000233.

    Article  CAS  Google Scholar 

  2. H. Barabadi, S. Honary, P. Ebrahimi, M. A. Mohammadi, and F. Naghibi (2014). Braz. J. Microbiol. 45, 1493–1501.

    Article  CAS  Google Scholar 

  3. S. Rajeshkumar (2016). J. Genet. Eng. Biotechnol. 14, 195–202. https://doi.org/10.1016/j.jgeb.2016.05.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Z. Izadiyan, K. Shameli, H. Hara, S. Husnaa, and M. Taib (2017). J. Mol. Struct.. https://doi.org/10.1016/j.molstruc.2017.09.039.

    Article  Google Scholar 

  5. K. Kanagamani, and P. Muthukrishnan (2019). https://doi.org/10.1007/s10876-019-01583-y.

  6. M. Shah, D. Fawcett, S. Sharma, S. K. Tripathy, and G. E. J. Poinern (2015). Materials (Basel) 8, 7278–7308. https://doi.org/10.3390/ma8115377.

    Article  CAS  Google Scholar 

  7. Y. Junejo, M. Safdar, M. A. Akhtar, M. Saravanan, and H. Anwar (2018). https://doi.org/10.1007/s10904-018-0971-z.

  8. Z. Li, Z. Ma, T. J. van der Kuijpa, Z. Yuan, and L. Huang (2014). Sci. Total. Environ. 468–469, 843–853.

    Article  Google Scholar 

  9. R. Kanwal, F. Fiza, I. Waheed, and M. S. H. Akash (2018). J. Cell. Biochem. 119, 157–184. https://doi.org/10.1002/jcb.26234.

    Article  CAS  Google Scholar 

  10. J. Liao, Z. Wen, X. Ru, J. Chen, H. Wu, and C. We (2016). Ecotoxicol. Environ. 124, 460–469.

    Article  CAS  Google Scholar 

  11. S. Raja, H. M. N. Cheema, S. Babar, A. A. Khan, G. Murtaza, and U. Aslam (2015). Agric. Water Manag. 158, 26–34.

    Article  Google Scholar 

  12. A. N. Berlina, A. V Zherdev, and B. B. Dzantiev (2019). Microchim. Acta 186, 172. https://doi.org/10.1007/s00604-018-3168-9.

    Article  CAS  Google Scholar 

  13. S. A. Banthia (2009). New J. Chem. 29, 1007–1010.

    Article  Google Scholar 

  14. M. H. Lee, L. Soon, S. H. Kim, K. Chulhun, and J. S. Kim (2009). Org. Lett. 11, 2101–2104.

    Article  CAS  Google Scholar 

  15. Y. R. Kim, H. J. Kim, J. S. Kim, and H. Kim (2008). Adv. Mater. 20, 4428–4432.

    Article  CAS  Google Scholar 

  16. A. Gonzales, M. Firmino, C. Nomura, F. Rocha, P. Oliveira, and I. Gaubeur (2009). AnalChimica Acta 636, 198–204.

    Article  CAS  Google Scholar 

  17. K. N. Thakkar, S. S. Mhatre, and R. Y. Parikh (2010). Nanomed. Nanotechnol. Biol. Med. 6, 257–262. https://doi.org/10.1016/j.nano.2009.07.002.

    Article  CAS  Google Scholar 

  18. B. Buszewski, V. Railean-plugaru, M. Szultka-mlynska, and P. Golinska (2018). J. Microbiol. Immunol. Infect. 51, 45–54. https://doi.org/10.1016/j.jmii.2016.03.002.

    Article  CAS  PubMed  Google Scholar 

  19. P. Singh, Y. Kim, D. Zhang, and D. Yang (2016). Trends Biotechnol. 34, 588–599. https://doi.org/10.1016/j.tibtech.2016.02.006.

    Article  CAS  PubMed  Google Scholar 

  20. K. B. Narayanan and N. Sakthivel (2011). Adv. Colloid Interface Sci. 169, 59–79. https://doi.org/10.1016/j.cis.2011.08.004.

    Article  CAS  PubMed  Google Scholar 

  21. C. J. Kirubaharan et al. (2012). Ion Sens. Appl. 6–11.

  22. P. Kuppusamy, M. M. Yusoff, and G. P. Maniam (2016). Saudi Pharm. J. 24, 473–484. https://doi.org/10.1016/j.jsps.2014.11.013.

    Article  PubMed  Google Scholar 

  23. R. Malathi and V. Ganesan (2016). Int. J. ChemTech Res. 7, 734–739.

    Google Scholar 

  24. M. Farrokhnia, S. Karimi, S. Momeni, and S. Khalililaghab (2017). Sens. Actuators B Chem. 246, 979–987. https://doi.org/10.1016/j.snb.2017.02.066.

    Article  CAS  Google Scholar 

  25. I. Uddin, K. Ahmad, A. A. Khan, and M. A. Kazmi (2017). Sens. Bio-Sens. Res. 16, 62–67. https://doi.org/10.1016/j.sbsr.2017.11.005.

    Article  Google Scholar 

  26. R. Sharma, A. Dhillon, and D. Kumar (2018). Sci. Rep. 8, 5189. https://doi.org/10.1038/s41598-018-23469-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. G. M. Sangaonkar, M. P. Desai, T. D. Dongale, and K. D. Pawar (2020). Sci. Rep. 10, 1–12. https://doi.org/10.1038/s41598-020-58844-4.

    Article  CAS  Google Scholar 

  28. M. P. Desai, R. V. Patil, and K. D. Pawar (2020). Biotechnol. Rep. 25, e00404. https://doi.org/10.1016/j.btre.2019.e00404.

    Article  Google Scholar 

  29. A. S. Dakhil (2017). J. King Saud Univ. Sci. 29, 462–467. https://doi.org/10.1016/j.jksus.2017.05.013.

    Article  Google Scholar 

  30. S. Iravani (2014). Int. Sch. Res. Not. 2014.

  31. M. P. Desai and K. D. Pawar (2020). Mater. Sci. Eng. C 106, 110169. https://doi.org/10.1016/j.msec.2019.110169.

    Article  CAS  Google Scholar 

  32. N. Thangamani and N. Bhuvaneshwari (2019). Chem. Phys. Lett. 732, 136587. https://doi.org/10.1016/j.cplett.2019.07.015.

    Article  CAS  Google Scholar 

  33. A. F. Italiano, et al. (2018). Colloids Surf. B Biointerfaces.. https://doi.org/10.1016/j.colsurfb.2018.06.010.

    Article  PubMed  Google Scholar 

  34. M. Patil, et al. (2019). Colloids Surf. B Biointerfaces. 183, 110455. https://doi.org/10.1016/j.colsurfb.2019.110455.

    Article  CAS  PubMed  Google Scholar 

  35. C. W. Johnston, et al. (2013). Nat. Chem. Biol. 9, 241–243. https://doi.org/10.1038/nchembio.1179.

    Article  CAS  PubMed  Google Scholar 

  36. F. Reith, et al. (2009). Proc. Natl. Acad. Sci. 106, 17757–17762. https://doi.org/10.1073/pnas.0904583106.

    Article  PubMed  Google Scholar 

  37. J. K. Fredrickson et al. (2008). https://doi.org/10.1038/nrmicro1947.

  38. B. El-deeb, N. Y. Mostafa, S. Tork, and N. El-memoni (2014). Nanosci. Nanotechnol. Lett. 6, 1–13. https://doi.org/10.1166/nnl.2014.1780.

    Article  CAS  Google Scholar 

  39. M. Kumari, et al. (2016). Sci. Rep. 6, 1–14. https://doi.org/10.1038/srep27575.

    Article  CAS  Google Scholar 

  40. J. Li, Q. Li, X. Ma, B. Tian, and T. Li (2016). Int. J. Nanomed. 11, 5931–5944.

    Article  CAS  Google Scholar 

  41. A. Mishra, M. Kumari, S. Pandey, V. Chaudhry, K. C. Gupta, and C. S. Nautiyal (2014). Bioresour. Technol. Technol. 166, 235–242. https://doi.org/10.1016/j.biortech.2014.04.085.

    Article  CAS  Google Scholar 

  42. S. A. Wadhwani, U. U. Shedbalkar, R. Singh, M. S. Karve, and B. A. Chopade (2014). World J. Microbiol. Biotechnol. 30, 2723–2731. https://doi.org/10.1007/s11274-014-1696-y.

    Article  CAS  PubMed  Google Scholar 

  43. X. Zhang, et al. (2016). Colloids Surf. A Physicochem. Eng. Asp. 508, 360–365. https://doi.org/10.1016/j.colsurfa.2016.08.072.

    Article  CAS  Google Scholar 

  44. T. Wang, L. Yang, B. Zhang, and J. Liu (2010). Colloids Surf. B Biointerfaces 80, 94–102. https://doi.org/10.1016/j.colsurfb.2010.05.041.

    Article  CAS  PubMed  Google Scholar 

  45. M. Apte, P. Chaudhari, A. Vaidya, A. R. Kumar, and S. Zinjarde (2016). Colloids Surf. A Physicochem. Eng. Asp. 501, 1–8. https://doi.org/10.1016/j.colsurfa.2016.04.055.

    Article  CAS  Google Scholar 

  46. H. Zhou et al. (2015). RSC Adv. 42931–42934. https://doi.org/10.1039/c5ra03174e.

  47. U. Priyanka, A. G. K. M, M. G. Elisha, S. T. B, N. Nitish, and R. M. B, (2017). Int. Biodeterior. Biodegrad. 119, 78–86. https://doi.org/10.1016/j.ibiod.2016.10.009.

  48. V. Poornimaa, V. Alexandarb, S. Iswariyaa, and P. T. T. S. U. Perumalc (2016). RSC Adv.. https://doi.org/10.1039/C6RA04433F.

    Article  Google Scholar 

  49. S. Maiti, G. Barman, and J. K. Laha (2016). Appl. Nanosci. 6, 529–538.

    Article  CAS  Google Scholar 

  50. U. Kreibig and L. Genzel (1985). Surf. Sci. 156, 678–700. https://doi.org/10.1016/0039-6028(85)90239-0.

    Article  CAS  Google Scholar 

  51. A. Szilagyi, V. Grimm, A. K. Arakaki, and J. Skolnick Phys. Biol. 2. https://doi.org/10.1088/1478-3975/2/2/.

  52. C. Liu, Y. Hsieh, C. Huang, and Z. Lin (2008). Chem. Commun.. https://doi.org/10.1039/b719856f.

    Article  Google Scholar 

  53. W. Addis and A. Abebaw (2017). Cogent. Chem. 3, 1–12. https://doi.org/10.1080/23312009.2017.1419422.

    Article  CAS  Google Scholar 

  54. O. Chahrour, et al. (2017). J. Pharm. Biomed. Anal. 145, 84–90. https://doi.org/10.1016/j.jpba.2017.06.045.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to SAIF IIT Bombay. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran D. Pawar.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desai, M.P., Patil, R.V., Harke, S.S. et al. Bacterium Mediated Facile and Green Method for Optimized Biosynthesis of Gold Nanoparticles for Simple and Visual Detection of Two Metal Ions. J Clust Sci 32, 341–350 (2021). https://doi.org/10.1007/s10876-020-01793-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01793-9

Keywords

Navigation