Skip to main content
Log in

Mechanical mechanism for the translocation of hexameric and nonstructural helicases: Dependence on physical parameters

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Three recently observed facts of the translocation of actual hexameric and nonstructural (NS) helicases are related to the various physical quantities and are in accordance with the recently proposed mechanical mechanism: a) the translocation of hexameric helicases might be led by either the N-terminal domain (NTD) or C-terminal domain (CTD) depending on which domain has a smaller central pore, b) the translocation speed (vt) of the ring-shaped helicases and NS helicases decreased with decreasing applied tension, and c) a large difference in the vt of the NS helicase was observed for the helicase translocating on DNA and RNA. These findings are the effects of the physical quantities of the helicase/nuclei acid strands on the translocation of helicases and are difficult to explain with biochemical models. We predict that a similar behavior as described in b) and c) is also shown by hexameric helicases. The validity of the mechanical mechanism is demonstrated in simulation experiments.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.R. Singleton, M.S. Dillingham, D.B. Wigley, Annu. Rev. Biochem. 76, 23 (2007)

    Article  Google Scholar 

  2. J.L. Kim, K.A. Morgenstern, J.P. Griffith, M.D. Dwyer, J.A. Thomson, M.A. Murcko, C. Lin, P.R. Caron, Structure 6, 89 (1998)

    Article  Google Scholar 

  3. H.S. Subramanya, L.E. Bird, J.A. Brannigan, D.B. Wigley, Nature 384, 379 (1996)

    Article  ADS  Google Scholar 

  4. N. Yao, T. Hesson, M. Cable, Z. Hong, A.D. Kwong, H.V. Le, P.C. Weber, Nat. Struct. Biol. 4, 463 (1997)

    Article  Google Scholar 

  5. M.K. Levin, M. Gurjar, S.S. Patel, Nat. Struct. Mol. Biol. 12, 429 (2005)

    Article  Google Scholar 

  6. S. Korolev, J. Hseih, G.H. Gauss, T.M. Lohman, G. Waksman, Cell 90, 636 (1997)

    Article  Google Scholar 

  7. A. Chakraborty, D. Wang, Y.W. Ebright, Y. Korlann, E. Kortkhonjia, T. Kim, S. Chowdhury, S. Wigneshweraraj, H. Irschik, R. Jansen, B.T. Nixon, J. Knight, S. Weiss, R. Ebright, Science 337, 591 (2012)

    Article  ADS  Google Scholar 

  8. M.E. O’Donnell, H. Li, Nat. Struct. Mol. Biol. 25, 122 (2018)

    Article  Google Scholar 

  9. C.-T. Lin, F. Tritschler, K.S. Lee, M. Gu, C.M. Rice, T. Ha, Protein Sci. 26, 1391 (2017)

    Article  Google Scholar 

  10. E.J. Enemark, L. Joshua-Tor, Nature 442, 270 (2006)

    Article  ADS  Google Scholar 

  11. P. Guo, Z. Zhao, J. Haak, S. Wang, D. Wu, B. Meng, T. Weitao, Biotechn. Adv. 32, 853 (2014)

    Article  Google Scholar 

  12. M.E. Douglas, F.A. Ali, A. Costa, J.F.X. Diffley, Nature 555, 265 (2018)

    Article  ADS  Google Scholar 

  13. N.D. Thomsen, J.M. Berger, Cell 139, 523 (2009)

    Article  Google Scholar 

  14. D.S. Johnson, L. Bai, B.Y. Smith, S.S. Patel, M.D. Wang, Cell 129, 1299 (2007)

    Article  Google Scholar 

  15. A. Wolfe, K. Phipps, T. Weitao, Cell Biosci. 4, 31 (2014)

    Article  Google Scholar 

  16. Y.C. Chou, J. Phys. D 51, 135401 (2018)

    Article  ADS  Google Scholar 

  17. R. Georgescu, Z. Yuan, L. Bai, R. de Luna Almeida Santos, J. Sun, D. Zhang, O. Yurieva, H. Li, M.E. O’Donnell, Proc. Natl. Acad. Sci. U.S.A. 114, E697 (2017)

    Article  Google Scholar 

  18. O. Itsathitphaisarn, R.A. Wing, W.K. Eliason, J. Wang, T.A. Steitz, Cell 151, 267 (2012)

    Article  Google Scholar 

  19. E.A. Toth, Y. Li, M.R. Sawaya, Y. Cheng, T. Ellenberger, Cell 12, 1113 (2003)

    Google Scholar 

  20. P.M. Matias, S. Gorynia, P. Donner, M.A. Carrondo, J. Biol. Chem. 281, 38918 (2006)

    Article  Google Scholar 

  21. T.H. Massey, C.P. Mercogliano, J. Yates, D.J. Sherratt, J. Lowe, Mol. Cell 23, 457 (2006)

    Article  Google Scholar 

  22. M. Manosas, X.G. Xi, D. Bensimon, V. Crowuette, Nucl. Acids Res. 38, 5518 (2010)

    Article  Google Scholar 

  23. P. Xie, Biophys. Chem. 211, 49 (2016)

    Article  Google Scholar 

  24. S.S. Patel, I. Donmez, J. Biol. Chem. 281, 18265 (2006)

    Article  Google Scholar 

  25. A.Y. Grosberg, A.R. Khokhlov, Statistical Physics of Macromolecules (American Institute of Physics, 1994)

  26. H. Chen, S.P. Meisburger, S.A. Pabit, J.L. Sutton, W.W. Webb, L. Pollack, Proc. Natl. Acad. Sci. U.S.A. 109, 799 (2012)

    Article  ADS  Google Scholar 

  27. L.A. Amos, D. Schliper, Advances in Protein Chemistry, Vol. 71 (Elsevier Academic Press, 2005) p. 257

  28. T. Fujii, A.H. Iwane, T. Yanahida, K. Namba, Nature 467, 724 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. C. Chou.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chou, Y.C. Mechanical mechanism for the translocation of hexameric and nonstructural helicases: Dependence on physical parameters. Eur. Phys. J. E 43, 21 (2020). https://doi.org/10.1140/epje/i2020-11944-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2020-11944-1

Keywords

Navigation