Skip to main content
Log in

Activity-modulated phase transition in a two-dimensional mixture of active and passive colloids

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We study a two-dimensional binary mixture of active and passive colloids as an idealized model of an hybrid aggregate of living cells and inert particles. We perform molecular dynamics simulations of this system using two different thermostats, and we systematically investigate the effect of varying these two effective temperatures on the system behavior, as characterized by its density, structure and thermoelastic properties. Our results indicate that the presence of active colloids shifts the mixture towards the liquid state and renders it more deformable. Such system softening and melting effects due to the addition of active particles are larger than expected from a linear combination of temperatures of the active and passive components. This heightened effect becomes more pronounced as the effective temperature difference between the two components becomes larger. The binary mixture remains homogeneous for moderate colloidal activity, but segregation arises for large effective temperature difference. Our results provide insights to guide future experimental hybrid aggregate studies with promising biomedical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Marenduzzo, Eur. Phys. J. ST 225, 2065 (2016)

    Article  Google Scholar 

  2. A.P. Solon, M.E. Cates, J. Tailleur, Eur. Phys. J. ST 224, 1231 (2015)

    Article  Google Scholar 

  3. C. Touya, T. Schwalger, B. Lindner, Phys. Rev. E 83, 051913 (2011)

    Article  ADS  Google Scholar 

  4. F. Ginot, A. Solon, Y. Kafri, C. Ybert, J.T.T. Cottin-Bizonne, New J. Phys. 20, 115001 (2018)

    Article  ADS  Google Scholar 

  5. P. Melby, F.V. Reyes, A. Prevost, R. Robertson, P. Kumar, D.A. Egolf, J.S. Urbach, J. Phys. Condens. Matter 17, S2689 (2005)

    Article  Google Scholar 

  6. A. Agrawal, N. Ganai, S. Sengupta, G.I. Menon, J. Stat. Mech. 26, 014001 (2017)

    Article  Google Scholar 

  7. A.Y. Grosberg, J.F. Joanny, Phys. Rev. E 92, 032118 (2015)

    Article  ADS  Google Scholar 

  8. M. Schienbein, K. Franke, H. Gruler, Phys. Rev. E 49, 5462 (1994)

    Article  ADS  Google Scholar 

  9. J.C.M. Mombach, J.A. Glazier, Phys. Rev. Lett. 76, 3032 (1996)

    Article  ADS  Google Scholar 

  10. D. Drasdo, S. Höhme, Phys. Biol. 2, 133 (2005)

    Article  ADS  Google Scholar 

  11. J. Ranft, M. Basan, J. Elgeti, J.F. Joanny, J. Prost, F. Jülicher, Proc. Natl. Acad. Sci. U.S.A. 107, 20863 (2010)

    Article  ADS  Google Scholar 

  12. M. Basan, J. Prost, J.F. Joanny, J. Elgeti, Phys. Biol. 8, 026014 (2011)

    Article  ADS  Google Scholar 

  13. P. Van Liedekerke, J. Neitsch, T. Johann, K. Alessandri, P. Nassoy, D. Drasdo, PLoS Comput. Biol. 15, e1006273 (2019)

    Article  ADS  Google Scholar 

  14. D. Gonzalez-Rodriguez, K. Guevorkian, S. Douezan, F. Brochard-Wyart, Science 338, 910 (2012)

    Article  ADS  Google Scholar 

  15. D.L. Hu, S. Phonekeo, E. Altshuler, F. Brochard-Wyart, Eur. Phys. J. ST 225, 629 (2016)

    Article  Google Scholar 

  16. B. Brunel, G. Beaune, U. Nagarajan, S. Dufour, F. Brochard-Wyart, F.M. Winnik, Soft Matter 12, 7902 (2016)

    Article  ADS  Google Scholar 

  17. G. Beaune, U. Nagarajan, F. Brochard-Wyart, F.M. Winnik, Langmuir 35, 7396 (2019)

    Article  Google Scholar 

  18. M. Han, J. Yan, S. Granick, E. Luijten, Proc. Natl. Acad. Sci. U.S.A. 114, 7513 (2017)

    Article  ADS  Google Scholar 

  19. Y. Fily, M.C. Marchetti, Phys. Rev. Lett. 108, 235702 (2012)

    Article  ADS  Google Scholar 

  20. S.N. Weber, C.A. Weber, E. Frey, Phys. Rev. Lett. 116, 058301 (2016)

    Article  ADS  Google Scholar 

  21. H. Tanaka, A.A. Lee, M.P. Brenner, Phys. Rev. Fluids 2, 043103 (2017)

    Article  ADS  Google Scholar 

  22. J. Bialké, T. Speck, H. Löwen, Phys. Rev. Lett. 108, 168301 (2012)

    Article  ADS  Google Scholar 

  23. G. Briand, O. Dauchot, Phys. Rev. Lett. 117, 098004 (2016)

    Article  ADS  Google Scholar 

  24. P. Digregorio, D. Levis, D.L. Suma, L.F. Cugliandolo, G. Gonnella, I. Pagonabarraga, Phys. Rev. Lett. 121, 098003 (2018)

    Article  ADS  Google Scholar 

  25. R. Ni, M.A. Cohen Stuart, M. Dijkstra, Nat. Commun. 4, 2704 (2013)

    Article  ADS  Google Scholar 

  26. R. Ni, M.A. Cohen Stuart, M. Dijkstra, P.G. Bolhuis, Soft Matter 10, 6609 (2014)

    Article  ADS  Google Scholar 

  27. S.R. McCandlish, A. Baskaran, M.F. Hagan, Soft 8, 2527 (2012)

    Google Scholar 

  28. J. Stenhammar, R. Wittkowski, D. Marenduzzo, M.E. Cates, Phys. Rev. Lett. 114, 018301 (2015)

    Article  ADS  Google Scholar 

  29. T.F.F. Farage, P. Krinninger, J.M. Brader, Phys. Rev. E 91, 042310 (2015)

    Article  ADS  Google Scholar 

  30. J.P. Wittmer, H. Xu, P. Polinska, F. Weysser, J. Baschnagel, J. Chem. Phys. 138, 12A533 (2013)

    Article  Google Scholar 

  31. D. Li, H. Xu, J.P. Wittmer, J. Phys.: Condens. Matter 28, 045101 (2016)

    ADS  Google Scholar 

  32. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  33. M. Delarue, J.F. Joanny, F. Jülicher, J. Prost, Interface Focus 4, 20140033 (2014)

    Article  Google Scholar 

  34. J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, 2nd edition (Academic Press, 1986)

  35. D.R. Squire, A.C. Holt, W.G. Hoover, Physica 42, 388 (1969)

    Article  ADS  Google Scholar 

  36. D. Li, H. Xu, Mol. Phys. 115, 3104 (2017)

    Article  ADS  Google Scholar 

  37. R.H. Colby, M. Rubinstein, Polymer Physics (Oxford University Press, New York, 2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Gonzalez-Rodriguez.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elismaili, M., Hamze, S., Xu, H. et al. Activity-modulated phase transition in a two-dimensional mixture of active and passive colloids. Eur. Phys. J. E 43, 18 (2020). https://doi.org/10.1140/epje/i2020-11942-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2020-11942-3

Keywords

Navigation