Skip to main content
Log in

Underlay spectrum sharing with adaptive interference cancelation at primary and secondary receivers

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

For the underlay spectrum sharing, a primary transmitter (PT) and a secondary transmitter (ST) can transmit simultaneously to a primary receiver (PR) and a secondary receiver (SR), respectively. The transmit power of ST is strictly controlled under the performance constraint of primary system. The strong interference from PT and the weak signal from ST make the communication quality of secondary system very poor, especially when the two systems are close. In this work, we adopt the successive interference cancellation (SIC) technique at either or both of PR and SR for the data detection. Four spectrum sharing schemes are studied, i.e., PR–DIR–SR–DIR, PR–DIR–SR–SIC, PR–SIC–SR–DIR, PR–SIC–SR–SIC. The transmit power of ST is properly set to minimize the secondary outage probability subject to a performance-loss constraint of primary system. Numerical results show that the SIC decoding can significantly improve the spectral efficiency, especially when PR performs the SIC decoding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Goldsmith, A., Jafar, S. A., Maric, I., & Srinivasa, S. (2009). Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proceedings of the IEEE, 97(5), 894–914.

    Google Scholar 

  2. Liang, Y.-C., Zeng, Y., Peh, E. C. Y., & Hoang, A. T. (2008). Sensing-throughput tradeoff for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(4), 1326–1337.

    Google Scholar 

  3. Zhang, W., Mallik, R. K., & Letaief, K. B. (2009). Optimization of cooperative spectrum sensing with energy detection in cognitive radio networks. IEEE Transactions on Wireless Communications, 8(12), 5761–5766.

    Google Scholar 

  4. Lee, J., Wang, H., Andrews, J. G., & Hong, D. (2011). Outage probability of cognitive relay networks with interference constraints. IEEE Transactions on Wireless Communications, 10(2), 390–395.

    Google Scholar 

  5. Le, L. B., & Hossain, E. (2008). Resource allocation for spectrum underlay in cognitive radio networks. IEEE Transactions on Wireless Communications, 7(12), 5306–5315.

    Google Scholar 

  6. Simeone, O., Stanojev, I., Savazzi, S., Bar-Ness, Y., Spagnolini, U., & Pickholtz, R. (2008). Spectrum leasing to cooperating secondary ad hoc networks. IEEE Journal on Selected Areas in Communications, 26(1), 203–213.

    Google Scholar 

  7. Li, Y., Long, H., Peng, M., & Wang, W. (2014). Spectrum sharing with analog network coding. IEEE Transactions on Vehicular Technology, 63(4), 1703–1716.

    Google Scholar 

  8. Zou, J., Xiong, H., Wang, D., & Chen, C. W. (2013). Optimal power allocation for hybrid overlay/underlay spectrum sharing in multiband cognitive radio networks. IEEE Transactions on Vehicular Technology, 62(4), 1827–1837.

    Google Scholar 

  9. Senthuran, S., Anpalagan, A., & Das, O. (2012). Throughput analysis of opportunistic access strategies in hybrid underlay-overlay cognitive radio networks. IEEE Transactions on Wireless Communications, 11(6), 2024–2035.

    Google Scholar 

  10. Mach, P., & Becvar, Z. (2017). Energy-aware dynamic selection of overlay and underlay spectrum sharing for cognitive small cells. IEEE Transactions on Vehicular Technology, 66(5), 4120–4132.

    Google Scholar 

  11. Mehmeti, F., & Spyropoulos, T. (2018). Performance analysis, comparison and optimization of interweave and underlay spectrum access in cognitive radio networks. IEEE Transactions on Vehicular Technology, 67(8), 7143–7157.

    Google Scholar 

  12. Chu, T. M. C., Phan, H., & Zepernick, H.-J. (2014). Hybrid interweave-underlay spectrum access for cognitive cooperative radio networks. IEEE Transactions on Communications, 62(7), 2183–2197.

    Google Scholar 

  13. Khoshkholgh, M. G., Navaie, K., & Yanikomeroglu, H. (2013). Interference management in underlay spectrum sharing using indirect power control signalling. IEEE Transactions on Wireless Communications, 12(7), 3264–3277.

    Google Scholar 

  14. Zhao, N., Yu, F. R., Sun, H., & Li, M. (2016). Adaptive power allocation schemes for spectrum sharing in interference-alignment-based cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3700–3714.

    Google Scholar 

  15. Phan, K. T., Vorobyov, S. A., Sidiropoulos, N. D., & Tellambura, C. (2009). Spectrum sharing in wireless networks via QoS-aware secondary multicast beamforming. IEEE Transactions on Signal Processing, 57(6), 2323–2335.

    Google Scholar 

  16. Luo, L., Zhang, P., Zhang, G., & Qin, J. (2011). Outage performance for cognitive relay networks with underlay spectrum sharing. IEEE Communications Letters, 15(7), 710–712.

    Google Scholar 

  17. Chen, J., Si, J., Li, Z., & Huang, H. (2012). On the performance of spectrum sharing cognitive relay networks with imperfect CSI. IEEE Communications Letters, 16(7), 1002–1005.

    Google Scholar 

  18. Lan, P., Zhai, C., Chen, L., Gao, B., & Sun, F. (2018). Optimal power allocation for bi-directional full duplex underlay cognitive radio networks. IET Communications, 12(2), 220–227.

    Google Scholar 

  19. Guimaraes, F. R. V., da Costa, D. B., Tsiftsis, T. A., Cavalcante, C. C., & Karagiannidis, G. K. (2014). Multiuser and multirelay cognitive radio networks under spectrum-sharing constraints. IEEE Transactions on Vehicular Technology, 63(1), 433–439.

    Google Scholar 

  20. Olivo, E. E. B., Osorio, D. P. M., da Costa, D. B., & Filho, J. C. S. S. (2014). Outage performance of spectrally efficient schemes for multiuser cognitive relaying networks with underlay spectrum sharing. IEEE Transactions on Wireless Communications, 13(12), 6629–6642.

    Google Scholar 

  21. Moualeu, J. M., Hamouda, W., & Takawira, F. (2017). Cognitive coded cooperation in underlay spectrum-sharing networks under interference power constraints. IEEE Transactions on Vehicular Technology, 66(3), 2099–2113.

    Google Scholar 

  22. Hong, J.-P., Hong, B., Ban, T. W., & Choi, W. (2012). On the cooperative diversity gain in underlay cognitive radio systems. IEEE Transactions on Communictions, 60(1), 209–219.

    Google Scholar 

  23. Zhai, C., Zheng, L., & Guo, W. (2018). Cognitive decode-and-forward relaying with successive interference cancellation. EURASIP Journal on Wireless Communications and Networking, 2018, 1–17.

    Google Scholar 

  24. Hatamnia, S., Vahidian, S., Aissa, S., Champagne, B., & Ahmadian-Attari, M. (2017). Network-coded two-way relaying in spectrum-sharing systems with quality-of-service requirements. IEEE Transactions on Vehicular Technology, 66(2), 1299–1312.

    Google Scholar 

  25. Vahidian, S., Soleimani-Nasab, E., Aissa, S., & Ahmadian-Attari, M. (2017). Bidirectional AF relaying with underlay spectrum sharing in cognitive radio networks. IEEE Transactions on Vehicular Technology, 66(3), 2367–2381.

    Google Scholar 

  26. Deng, Y., Kim, K. J., Duong, T. Q., Elkashlan, M., Karagiannidis, G. K., & Nallanathan, A. (2016). Full-duplex spectrum sharing in cooperative single carrier systems. IEEE Transactions on Cognitive Communications and Networking, 2(1), 68–82.

    Google Scholar 

  27. Olivo, E. E. B., Osorio, D. P. M., Alves, H., & Filho, J. C. S. S. (2018). Cognitive full-duplex decode-and-forward relaying networks with usable direct link and transmit-power constraints. IEEE Access, 6, 24983–24995.

    Google Scholar 

  28. Gaafar, M., Amin, O., Abediseid, W., & Alouini, M.-S. (2017). Underlay spectrum sharing techniques with in-band full-duplex systems using improper Gaussian signaling. IEEE Transactions on Wireless Communications, 16(1), 235–249.

    Google Scholar 

  29. Yan, Z., Zhang, X., Liu, H.-L., & Liang, Y.-C. (2018). An efficient transmit power control strategy for underlay spectrum sharing networks with spatially random primary users. IEEE Transactions on Wirless Communications, 17(7), 4341–4351.

    Google Scholar 

  30. Lee, C.-H., & Haenggi, M. (2012). Interference and outage in poisson cognitive networks. IEEE Transactions on Wireless Communications, 11(4), 1392–1401.

    Google Scholar 

  31. Lee, J., Andrews, J. G., & Hong, D. (2013). Spectrum-sharing transmission capacity with interference cancellation. IEEE Transactions on Communications, 61(1), 76–86.

    Google Scholar 

  32. Huang, K., Lau, V. K. N., & Chen, Y. (2009). Spectrum sharing between cellular and mobile ad hoc networks: Transmission-capacity trade-off. IEEE Journal on Selected Areas in Communications, 27(7), 1256–1267.

    Google Scholar 

  33. Zhai, C., Zhang, W., & Mao, G. (2014). Cooperative spectrum sharing between cellular and ad-hoc networks. IEEE Transactions on Wireless Communications, 13(7), 4025–4037.

    Google Scholar 

  34. Wang, Z., & Zhang, W. (2014). Opportunistic spectrum sharing with limited feedback in Poisson cognitive radio networks. IEEE Transactions on Wireless Communications, 13(12), 7098–7109.

    Google Scholar 

  35. Wang, L., & Wu, H. (2014). Fast pairing of device-to-device link underlay for spectrum sharing with cellular users. IEEE Communications Letters, 18(10), 1803–1806.

    Google Scholar 

  36. Lin, X., Andrews, J. G., & Ghosh, A. (2014). Spectrum sharing for device-to-device communication in cellular networks. IEEE Transactions on Wireless Communications, 13(12), 6727–6740.

    Google Scholar 

  37. Li, Y., Jiang, T., Sheng, M., & Zhu, Y. (2016). QoS-aware admission control and resource allocation in underlay device-to-device spectrum-sharing networks. IEEE Journal on Selected Areas in Communications, 34(11), 2874–2886.

    Google Scholar 

  38. Kaufman, B., Lilleberg, J., & Aazhang, B. (2013). Spectrum sharing scheme between cellular users and ad-hoc device-to-device users. IEEE Transactions on Wireless Communications, 12(3), 1038–1049.

    Google Scholar 

  39. Gui, J., & Deng, J. (2018). Multi-hop relay-aided underlay D2D communications for improving cellular coverage quality. IEEE Access, 6, 14318–14338.

    Google Scholar 

  40. Lee, S., Zhang, R., & Huang, K. (2013). Opportunistic wireless energy harvesting in cognitive radio networks. IEEE Transactions on Wireless Communications, 12(9), 4788–4799.

    Google Scholar 

  41. Park, S., & Hong, D. (2013). Optimal spectrum access for energy harvesting cognitive radio networks. IEEE Transactions on Wireless Communications, 12(12), 6166–6179.

    Google Scholar 

  42. Yin, S., Zhang, E., Qu, Z., Yin, L., & Li, S. (2014). Optimal cooperation strategy in cognitive radio systems with energy harvesting. IEEE Transactions on Wireless Communications, 13(9), 4693–4707.

    Google Scholar 

  43. Zhai, C., Liu, J., & Zheng, L. (2016). Relay based spectrum sharing with secondary users powered by wireless energy harvesting. IEEE Transactions on Communications, 64(5), 1875–1887.

    Google Scholar 

  44. Xu, C., Zheng, M., Liang, W., Yu, H., & Liang, Y.-C. (2017). End-to-end throughput maximization for underlay multi-hop cognitive radio networks with RF energy harvesting. IEEE Transactions on Wireless Communications, 16(6), 3561–3572.

    Google Scholar 

  45. Yang, Z., Ding, Z., Fan, P., & Karagiannidis, G. K. (2016). Outage performance of cognitive relay networks with wireless information and power transfer. IEEE Transactions on Vehicular Technology, 65(5), 3828–3833.

    Google Scholar 

  46. Zhai, C., Liu, J., & Zheng, L. (2016). Cooperative spectrum sharing with wireless energy harvesting in cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(7), 5303–5316.

    Google Scholar 

  47. Zhai, C., Chen, H., Wang, X., & Liu, J. (2018). Opportunistic spectrum sharing with wireless energy transfer in stochastic networks. IEEE Transactions on Communications, 66(3), 1296–1308.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhai.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of Chao Zhai was supported by the Fundamental Research Funds of Shandong University (2017TB0011), and the open research fund of National Mobile Communications Research Laboratory, Southeast University (2019D09). The work of Jie Tian was supported by the National Natural Science Foundation of China (61801278), Shandong Provincial Natural Science Foundation for Young Scholars of China (ZR2017QF008), and Shandong Provincial Scientific Research Programs in Colleges and Universities (J18KA310).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, C., Tian, J. Underlay spectrum sharing with adaptive interference cancelation at primary and secondary receivers. Telecommun Syst 73, 595–605 (2020). https://doi.org/10.1007/s11235-019-00650-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-019-00650-z

Keywords

Navigation