Skip to main content

Advertisement

Log in

Potential DNA Vaccine for Haemorrhagic Septiceamia Disease

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Pasteurella multocida is the main cause of haemorrhagic septicaemia (HS) outbreak in livestock, such as cattle and buffaloes. Conventional vaccines such as alum-precipitated or oil-adjuvant broth bacterins were injected subcutaneously to provide protection against HS. However, the immunity developed is only for short term and needed to be administered frequently. In our previous study, a short gene fragment from Pasteurella multocida serotype B was obtained via shotgun cloning technique and later was cloned into bacterial expression system. pQE32-ABA392 was found to possess immunogenic activity towards HS when tested in vivo in rat model. In this study, the targeted gene fragment of ABA392 was sub-cloned into a DNA expression vector pVAX1 and named as pVAX1-ABA392. The new recombinant vaccine was stable and expressed on mammalian cell lines. Serum sample collected from a group of vaccinated rats for ELISA test shows that the antibody in immunized rats was present at high titer and can be tested as a vaccine candidate with challenge in further studies. This successful recombinant vaccine is immunogenic and potentially could be used as vaccine in future against HS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wijewardana, T. G. (1992). Haemorrhagic septicaemia. Reviews in Medical Microbiology,3, 59–63.

    Google Scholar 

  2. Abdullah, F. F. J., Osman, A. Y., Adamu, L., Yusof, M. S. M., Omar, A. R., Saharee, A. A., Haron, A. W., Abdullah, R., & Zamri-Saad, M. (2013). Polymerase chain reaction detection of Pasteurella multocida type B: 2 in mice following oral inoculation. Asian Journal of Animal and Veterinary Advances, 8, 493–501.

  3. Abubakar, M. S., & Zamri-Saad, M. (2011). Clinico-pathological changes in buffalo calves following oral exposure to Pasteurella multocida B:2. Basic Applied Pathol,4, 130–135.

    Article  Google Scholar 

  4. De Alwis, M. C. L. (1999). Haemorrhagic septicaemia ACIAR Monograph No. Canberra: Australian Centre for International Agricultural Research.

    Google Scholar 

  5. Harper, M., Boyce, J. D., & Adler, B. (2006). Pasteurella multocida pathogenesis: 125 years after Pasteur. FEMS Microbiology Letters,265, 1–10.

    Article  CAS  Google Scholar 

  6. Benkirane, A., & De Alwis, M. C. L. (2002). Haemorrhagic septicaemia, its significance, prevention and control in Asia. Veterinary Medicine Czechoslovakia,47(8), 234–240.

    Article  Google Scholar 

  7. Marza, D. A., Jesse, F. F. A., Ihsan, M. A., et al. (2016). Involvement of the nervous system following experimental infection with Pasteurella multocida B:2 in buffalo (Bubalus bubalis): A clinicopathological study. Microbe Pathology,93, 111–119.

    Article  Google Scholar 

  8. Annas, S., Zamri-Saad, M., Jesse, F. F. A., & Zunita, Z. (2015). Comparative clinic pathological changes in buffalo and cattle following infection by Pasteurella multocida B:2. Microbe Pathology,88, 94–102.

    Article  CAS  Google Scholar 

  9. Zamri-Saad, M. (2013). Haemorrhagic Septicaemia of cattle and buffaloes in Asia Malaysia. Malaysia: Universit Putra Malaysia Press.

    Google Scholar 

  10. Kamarudin, M. I. (2005). Haemorrhagic septicaemia: Eradication is a possibility. In: Proceedings of the Regional Symposium on Haemorrhagic Septicaemia, December 1–2, pp. 12–15.

  11. Ferreira, T. S. P. F., Moreno, L. Z., Felizardo, M. R., Gobbi, D. D. S., Filsner, P. H. L. N., Gomes, V. T. M., Moreno, M., Moreno, A. M. (2016) Pheno-and genotypic characterization of Pasteurella multocida isolated from cats, dogs and rabbits from Brazil. Comparative Immunology, Microbiology and Infectious Diseases, 45, 48–52.

  12. Thomas, J. (1972). The control of hemorrhagic septicaemia in West Malaysia. Tropical Animal Health and Production,4, 95–101.

    Article  CAS  Google Scholar 

  13. Al-Hasani, K., Boyce, J., McCarl, V. P., Bottomley, S., Wilkie, I., & Adler, B. (2007). Identification of novel immunogens in Pasteurella multocida. Microbial Cell Factories,6(1), 3.

    Article  Google Scholar 

  14. Bosch, M., Garrido, M. E., Roza, A. M. P., Badiola, I., Barbe, J., & Llagostera, M. (2004). Pasteurella multocida contain multiple immnugenic haemin- and haemoglobin-binding proteins. Veterinary Microbiology,99, 103–111.

    Article  CAS  Google Scholar 

  15. Salmah, I. (2000). Molecular characterization of virulence-determinant of recombinant clone ABA392 from P. multocida PMB202 of serotype B animal isolate. Dissertation, University of Malaya, Kuala Lumpur

  16. Ismail, S. (2004). Application of DNA technology in determining the virulence genes responsible for haemorrhagic septicaemia of Pasteurella multocida serotype B by using shotgun cloning. Asian Journal of Information Technology (AJIT), 3(12), 1221–1224.

    Google Scholar 

  17. Salmah, I. (1997). Molecular studies of Pasteurella multocida animal isolates. Dissertation, University of Malaya, Kuala Lumpur

  18. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed.). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  19. Close, T. I., & Rodriguez, R. L. (1982). Construction and characterisation of the chloramphenicol-resistance gene cartridge: A new approach to the transcriptional mapping of extrachromosomal elements. Gene,20(305), 316.

    Google Scholar 

  20. Hussaini, J., Nazmul, M. H. M., Mahmood, A. A., & Salmah, I. (2012). Recombinant Clone ABA392 protects laboratory animals from Pasteurella multocida Serotype B. Journal of Veterinary Advances,2(2), 114–119.

    Google Scholar 

  21. Einarsdottir, T., Gunnarsson, E., Sigurdardottir, O. G., Jorundsson, E., Fridriksdottir, V., Thorarinsdottir, G. E., et al. (2016). Variability of Pasteurella multocida isolated from Icelandic sheep and detection of the toxA gene. Journal of Medical Microbiology,65(9), 897–904.

    Article  CAS  Google Scholar 

  22. Corrongean, M. (1902). Bovine Pasteurella in the Malay Peninsula. The Veterinary Journal,55, 321–327.

    Google Scholar 

  23. Joseph, P. G. (1979). Hemorrhagic septicaemia in Peninsular Malaysia. Kajian Veterinar,11, 65–79.

    Google Scholar 

  24. Zulperi, D. M. (2008). Development of an Avirulent Pasteurella Multocida B: 2 by Disruption of the ABA392 DNA Fragment. Dissertation, Universiti Putra Malaysia, Selangor.

  25. Chandrasekaran, S., Kennett, L., Yeap, P. C., Muniandy, N., Rani, B., & Mukkur, T. K. S. (1994). Characterization of immune response and duration of protection in buffaloes immunized with haemorrhagic septicaemia vaccines. Veterinary Microbiology, 41, 213–219.

    Article  CAS  Google Scholar 

  26. Tabatabaei, M., Moazzeni Jula, G. R., Jabbari, A. R., & Esmailzadesh, M. (2007). Pathogenicity and immunogenicity of native and mutant strains of Pasteurella multocida, the causative agents of haemorrhagic septicemia. Iranian Journal of Veterinary Research,8, 40–44.

    Google Scholar 

  27. Montgomery, D. L., & Prather, K. J. (2006). Design of plasmid DNA constructs for vaccines. DNA Vaccines,1, 11–22.

    Article  Google Scholar 

  28. Williams, J. A., Carnes, A. E., & Hodgson, C. P. (2009). Plasmid DNA vaccine vector design: Impact on efficacy, safety and upstream production. Biotechnology Advances,27(4), 353–370.

    Article  CAS  Google Scholar 

  29. Wigler, M., Silverstein, S., Lee, L. S., Pellicer, A., Cheng, Y., & Axel, R. (1977). Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells. Cell,11, 223–232.

    Article  CAS  Google Scholar 

  30. Zhang, Y., Ma, C. H., Liu, H., Zhang, X. M., & Sun, W. S. (2007). pVAX1 plasmid vector-mediated gene transfer of soluble TRAIL suppresses human hepatocellular carcinoma growth in nude mice. Acta Biochimica Polonica,54(2), 307.

    Article  CAS  Google Scholar 

  31. Garcia, J. L., Innes, E. A., & Katzer, F. (2014). Current progress toward vaccines against Toxoplasma gondii. Vaccine.,4(1), 23–28.

    CAS  Google Scholar 

  32. Williams, J. (2013). Vector design for improved DNA vaccine efficacy, safety and production. Vaccines,1(3), 225–249.

    Article  CAS  Google Scholar 

  33. Singh, S., Singh, V. P., Cheema, P. S., Sandey, M., Ranjan, R., Gupta, S. K., et al. (2011). Immune response to DNA vaccine expressing transferrin binding protein a gene of Pasteurella multocida. Brazilian Journal of Microbiology,42(2), 750–760.

    Article  CAS  Google Scholar 

  34. Kowalczyk, D. W., & Ertl, H. C. J. (1999). Immune responses to DNA vaccines. Cellular and Molecular Life Sciences,55, 751–770.

    Article  CAS  Google Scholar 

  35. Skinner, M. A., Buddle, B. M., Wedlock, D. N., Keen, D., Lisle, G. W., & Tascon, R. E. (2003). A DNA prime-BCG boost vaccination strategy in cattle induces protection against bovis tuberculosis. Infection and Immunity,71, 4901–4907.

    Article  CAS  Google Scholar 

  36. Ahmad, T. A., Rammah, S. S., Sheweita, S. A., & Haroun, M. (2014). Development of immunization trials against Pasteruella multocida. Vaccine,32, 909–917.

    Article  Google Scholar 

  37. Hussaini, J. (2009). Analysis of recombinant DNA fragment derived from Pasteurella multocida genome with haemorrhagic and immunogenic properties: Towards a vaccine development. Dissertation, University Teknologi MARA.

  38. Register, K. B., Sacco, R. E., & Brockmeier, S. L. (2007). Immune response in mice and swineto DNA vaccines derived from the Pasteurella multocida toxin gene. Vaccine,25, 6118–6128.

    Article  CAS  Google Scholar 

  39. Gong, Q., Cheng, M., & Niu, M. (2011). Out membrane protein DNA vaccines for protec-tive immunity against virulent avian Pasteurella multocida in chickens. Procedia Environmental Sciences,8, 723–729.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by Postgraduate Research Grant (PPP) PG237-2014B Grant under University of Malaya. The authors are grateful to all Molecular Bacteriology Toxicology members for their laboratory assistance during this study.

Author information

Authors and Affiliations

Authors

Contributions

SI, SC, RDV, KTL and CWKS conceived and planned the research. SC and KTL performed the research. SC, NK and SI contributed to the analyzed of the result. HAR and NNR provided critical feedback and contributed new methods. SC and SI took the lead in writing manuscript. All authors provided critical feedback and helped shape the research, analysis and manuscript.

Corresponding author

Correspondence to Salmah Ismail.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chelliah, S., Velappan, R.D., Lim, K.T. et al. Potential DNA Vaccine for Haemorrhagic Septiceamia Disease. Mol Biotechnol 62, 289–296 (2020). https://doi.org/10.1007/s12033-020-00244-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-020-00244-0

Keywords

Navigation